zoukankan      html  css  js  c++  java
  • Supervised pre-trainning有监督预训练

    如我们有一个分类任务,数据库很小,这时还是需要通过预训练来避免深度模型的过拟合问题的,只不过预训练是通过在一个大的数据库上(比如imagenet),通过有监督的训练来完成的。这种有监督预训练加小的数据库上微调的模式称为Transfer learning

    R-CNN是大样本下有监督预训练 + 小样本微调的方式,解决了小样本难以训练甚至过拟合的问题。

    速度:经典的目标检测算法使用滑动窗法依次判断所有可能的区域。R-CNN预先提取一系列较可能是物体的候选区域,之后仅在这些候选区域上提取特征,进行判断。

    训练集:经典的目标检测算法在区域中提取人工设定的特征(Haar,HOG)。R-CNN使用两个数据库:                         

    一个较大的识别库(ImageNet ILSVC 2012):标定每张图片中物体的类别。一千万图像,1000类。
    一个较小的检测库(PASCAL VOC 2007):标定每张图片中,物体的类别和位置。一万图像,20类。
    使用识别库进行预训练,而后用检测库调优参数。最后在检测库上评测。

  • 相关阅读:
    sharepoint更新
    生成Log日志文件.NET
    sharepoint绑定
    sharepoint多表查询
    数据库导入
    sharepoint插入数据
    协方差矩阵求解算法分析
    .NET提供的加密算法概述
    掩耳盗铃之使用WebBrowser封装网页
    C#委托BeginInvoke返回值乱序问题
  • 原文地址:https://www.cnblogs.com/pacino12134/p/11404793.html
Copyright © 2011-2022 走看看