zoukankan      html  css  js  c++  java
  • caffe(3) 视觉层及参数

    本文只讲解视觉层(Vision Layers)的参数,视觉层包括Convolution, Pooling, Local Response Normalization (LRN)局部相应归一化, im2col等层。

    1、Convolution层:

    就是卷积层,是卷积神经网络(CNN)的核心层。

    type:Convolution

      lr_mult: 学习率的系数,最终的学习率是这个数乘以solver.prototxt配置文件中的base_lr。如果有两个lr_mult, 则第一个表示权值的学习率,第二个表示偏置项的学习率。一般偏置项的学习率是权值学习率的两倍。

    在后面的convolution_param中,我们可以设定卷积层的特有参数。

    必须设置的参数:

        num_output: 卷积核(filter)的个数

        kernel_size: 卷积核的大小。如果卷积核的长和宽不等,需要用kernel_h和kernel_w分别设定

    其它参数:

         stride: 卷积核的步长,默认为1。也可以用stride_h和stride_w来设置。

         pad: 扩充边缘,默认为0,不扩充。 扩充的时候是左右、上下对称的,比如卷积核的大小为5*5,那么pad设置为2,则四个边缘都扩充2个像素,即宽度和高度都扩充了4个像素,这样卷积运算之后的特征图就不会变小。也可以通过pad_h和pad_w来分别设定。

          weight_filler: 权值初始化。 默认为“constant",值全为0,很多时候我们用"xavier"算法来进行初始化,也可以设置为”gaussian"
          bias_filler: 偏置项的初始化。一般设置为"constant",值全为0。
          bias_term: 是否开启偏置项,默认为true, 开启
          group: 分组,默认为1组。如果大于1,我们限制卷积的连接操作在一个子集内。如果我们根据图像的通道来分组,那么第i个输出分组只能与第i个输入分组进行连接。
     
    输入:n*c0*h0*w0
    输出:n*c1*h1*w1
    其中,c1就是参数中的num_output,生成的特征图个数
     w1=(w0+2*pad-kernel_size)/stride+1;
     h1=(h0+2*pad-kernel_size)/stride+1;
    如果设置stride为1,前后两次卷积部分存在重叠。如果设置pad=(kernel_size-1)/2,则运算后,宽度和高度不变。
    示例:
     1 layer {
     2   name: "conv1"
     3   type: "Convolution"
     4   bottom: "data"
     5   top: "conv1"
     6   param {
     7     lr_mult: 1
     8   }
     9   param {
    10     lr_mult: 2
    11   }
    12   convolution_param {
    13     num_output: 20
    14     kernel_size: 5
    15     stride: 1
    16     weight_filler {
    17       type: "xavier"
    18     }
    19     bias_filler {
    20       type: "constant"
    21     }
    22   }
    23 }

     2、Pooling层

    也叫池化层,为了减少运算量和数据维度而设置的一种层。
    层类型:Pooling
    必须设置的参数:
       kernel_size: 池化的核大小。也可以用kernel_h和kernel_w分别设定。
    其它参数:
       pool: 池化方法,默认为MAX。目前可用的方法有MAX, AVE, VALID,或STOCHASTIC
       pad: 和卷积层的pad的一样,进行边缘扩充。默认为0
       stride: 池化的步长,默认为1。一般我们设置为2,即不重叠。也可以用stride_h和stride_w来设置。
     示例:
     1 layer {
     2   name: "pool1"
     3   type: "Pooling"
     4   bottom: "conv1"
     5   top: "pool1"
     6   pooling_param {
     7     pool: MAX
     8     kernel_size: 3
     9     stride: 2
    10   }
    11 }

    pooling层的运算方法基本是和卷积层是一样的。

    输入:n*c*w0*h0
    输出:n*c*w1*h1
    和卷积层的区别就是其中的c保持不变
     w1=(w0+2*pad-kernel_size)/stride+1;
     h1=(h0+2*pad-kernel_size)/stride+1;
    如果设置stride为2,前后两次卷积部分不重叠。100*100的特征图池化后,变成50*50.
    示例:
     1 layer {
     2   name: "pool1"
     3   type: "Pooling"
     4   bottom: "conv1"
     5   top: "pool1"
     6   pooling_param {
     7     pool: MAX
     8     kernel_size: 3
     9     stride: 2
    10   }
    11 }
    3、Local Response Normalization (LRN)层
    此层是对一个输入的局部区域进行归一化,达到“侧抑制”的效果。可去搜索AlexNet或GoogLenet,里面就用到了这个功能
    层类型:LRN
    参数:全部为可选,没有必须
      local_size: 默认为5。如果是跨通道LRN,则表示求和的通道数;如果是在通道内LRN,则表示求和的正方形区域长度。
      alpha: 默认为1,归一化公式中的参数。
      beta: 默认为5,归一化公式中的参数。
      norm_region: 默认为ACROSS_CHANNELS。有两个选择,ACROSS_CHANNELS表示在相邻的通道间求和归一化。WITHIN_CHANNEL表示在一个通道内部特定的区域内进行求和归一化。与前面的local_size参数对应。
     
    归一化公式:对于每一个输入, 去除以,得到归一化后的输出
     
    示例:
     1 layers {
     2   name: "norm1"
     3   type: LRN
     4   bottom: "pool1"
     5   top: "norm1"
     6   lrn_param {
     7     local_size: 5
     8     alpha: 0.0001
     9     beta: 0.75
    10   }
    11 }

    4、im2col层

    如果对matlab比较熟悉的话,就应该知道im2col是什么意思。它先将一个大矩阵,重叠地划分为多个子矩阵,对每个子矩阵序列化成向量,最后得到另外一个矩阵。

    看一看图就知道了:

    在caffe中,卷积运算就是先对数据进行im2col操作,再进行内积运算(inner product)。这样做,比原始的卷积操作速度更快。

    看看两种卷积操作的异同:

     
     
     
  • 相关阅读:
    php 邮件发送开发前期配置
    抛弃传统的curl,使用Guzzle
    TP5.1 分页(带参数传递)
    tp5.1 模型 where多条件查询 like 查询
    xpath 和 jsonpath 解析
    python分布式爬虫框架 --- scrapy-redis
    python爬虫框架——scrapy
    python爬虫 --- urllib
    mysql事务和锁
    mysql数据储存
  • 原文地址:https://www.cnblogs.com/pacino12134/p/9768996.html
Copyright © 2011-2022 走看看