【0】README
0.1)本文描述总结于 数据结构与算法分析, 但源代码为原创;
0.2)为什么写这篇博文? 再散列的代码实现 包括了 解决冲突的方法实现;很有代表性;(本源代码采用的解决冲突方法是 平方探测法)
##**【1】问题+解决方法** **1.0)开放定址法定义:它是一种不用链接解决冲突的方法:**如果有冲突发生, 那么就要尝试选择另外的单元,知道找出空的单元为止; ![这里写图片描述](http://img.blog.csdn.net/20151027215522048) **1.1)出现的问题:**对于使用平方探测的开放定址散列法,如果表的元素填的太满, 那么操作的运行时间将开始消耗过长,且 insert 操作可能失败, 这可能发生在有 太多的移动和插入混合的场合; **1.2)解决方法:**建立另外一个大约两倍大的表(使用一个相关的新散列函数),扫描整个原始散列表,计算每个元素的新散列值并将其插入到新表中; **1.3)看个荔枝:**
- 1)将元素13, 15, 24 和 6 插入到大小为 7 的开放定址散列表中:散列函数是 h(X) = X mod 7;设使用线性探测方法解决冲突问题, 插入结果得到的散列表表示在下图中:
- 2)如果将 23 插入表中, 那么从下图可以看到, 插入后的表将有超过70% 的单元是满的,因为表填得过满, 所以我们建立一个新表;该表的大小为 17, 因为17是原表大小两倍后的第一个素数;新的散列函数为 h(X) = X mod 17;扫描原来的表, 并将元素 6, 15, 23 , 24 以及13 插入到新表中, 如下下图所示:
##**【2】再散列** **2.1)定义:**以上整个操作就叫做再散列;显然这是一种非常昂贵的操作, 其运行时间为 O(N),因为有N 个元素要再散列而表的大小约为2N, 不过由于不是经常发生,所以实际效果根本不是那么差; **2.2)再散列的实现:** 再散列可以用平方探测以多种方法实现:
- 1)一种做法是:只要表满到一半就再散列;
- 2)另一个极端方法是:只有当插入失败时才再散列;
- 3)第3种方法即途中策略:当表到达某一个装填因子时进行再散列。由于随着装填因子的增加,表的性能有所下降, 因此,以好的截止手段实现的第三种策略, 可能是最好的策略;
2.3)再散列的作用:
再散列就是把 程序员从表大小的担心中解放出来, 这一点很重要, 因为在复杂的程序中散列表不能够做得任意地大;
##**【3】源代码+打印结果** **3.1)解决冲突的方法:**我们采用的是平方探测,1,-1,4,-4,...... **3.2)Attention)**在 “再散列”的代码中,我们为 HashTable 添加另一个 capacity 成员,用于和 size 相除构成 装填因子,以便于判断该装填因子是否超出某个值; **3.3)downlaod source code :** https://github.com/pacosonTang/dataStructure-algorithmAnalysis/blob/master/chapter5/p123_rehash.c **3.4)source code at a glance :** ```java #include
define ElementType int
define Error(str) printf(" error: %s ",str)
struct HashTable;
typedef struct HashTable *HashTable;
struct HashEntry;
typedef struct HashEntry *HashEntry;
typedef HashEntry EntryArray;
HashTable initHashTable(int size);
int find(ElementType key, HashTable ht);
HashTable insert(ElementType key, HashTable ht);
enum EntryType {Legitimate, Empty, Deleted};
struct HashEntry
{
ElementType key;
enum EntryType status;
};
struct HashTable
{
EntryArray entryArray;
int capacity;
int size;
};
//judge whether the value is prime or not, also 1 or 0
int isPrime(int value)
{
int temp;
int flag;
flag = 1;
temp = 2;
while(temp < sqrt(value))
{
if(value % temp == 0)
flag = 0;
temp++;
}
return flag;
}
// compute the minial prime greater than the value
int nextPrime(int value)
{
value++;
while(1)
{
if(isPrime(value))
break;
value++;
}
return value;
}
// hash function
int hashFunc(int key, int capacity)
{
return key % capacity;
}
// the rehash function to expand hash table capacity upto twice capcity
HashTable rehashFunc(HashTable ht)
{
int capacity;
int oldCapacity;
int i;
EntryArray temp;
temp = ht->entryArray;
oldCapacity = ht->capacity;
capacity = nextPrime(ht->capacity * 2);
ht = initHashTable(capacity);
for(i = 0; i < oldCapacity; i++)
if(temp[i].status == Legitimate)
insert(temp[i].key, ht);
free(temp);
return ht;
}
// initializing HashTable with given size and the table size should be a prime number
HashTable initHashTable(int capacity)
{
HashTable ht;
int i;
ht = (HashTable)malloc(sizeof(struct HashTable)); // allocate memory for HashTable
if(!ht)
{
Error("out of space, from func initHashTable");
return NULL;
}
ht->capacity = capacity; // the table capacity should be a prime number
ht->size = 0; // the number the hash table stores element
ht->entryArray = (HashEntry)malloc(capacity * sizeof(struct HashEntry)); // allocate memory for entry array
for(i = 0; i < capacity; i++)
ht->entryArray[i].status = Empty;
return ht;
}
// insert the entry with value key into the Hash Table
HashTable insert(ElementType key, HashTable ht)
{
int index;
double loadFactor = 0.7; // let the load facotr equals to 0.7, of cource load factor depends on your mind
double temp;
index = find(key, ht);
if(ht->entryArray[index].status != Legitimate)
{
ht->entryArray[index].status = Legitimate;
ht->entryArray[index].key = key;
ht->size++;
// judge whether the load facotr is greater than the certain value
temp = (double) ht->size / ht->capacity;
if(temp >= loadFactor)
ht = rehashFunc(ht);
}
return ht;
}
// find the index the entry with key should be placed into
int find(ElementType key, HashTable ht) // find the hash entry with value key
{
int index;
int collisionIndex;
int minus = -1;
int temp;
collisionIndex = 0;
index = hashFunc(key, ht->capacity); // call the first hash function for allocating empty position for storing the key
temp = index;
while(ht->entryArray[temp].status != Empty && ht->entryArray[temp].key != key ) // adopting square probing
{
if(minus == -1)
collisionIndex++;
minus *= -1;
temp = collisionIndex * collisionIndex * minus;
temp = (index + temp) % ht->capacity;
}
return temp;
}
void printHashTable(HashTable ht)
{
ElementType key;
int i;
if(!ht)
Error("printing execution failure, for hashtable is null, from func printHashTable");
i = 0;
while(i < ht->capacity)
{
printf("
index[%d] = ", i);
key = ht->entryArray[i].key;
if(ht->entryArray[i].status == Legitimate)
printf("%d", key);
else
printf("NULL");
printf(" ");
i++;
}
printf("
");
}
int main()
{
HashTable ht = NULL;
int dataSize = 4;
int i;
ElementType key[] = {13, 15, 24, 6};
printf("
=== test for rehashing the hash table with load factor 0.7 and capacity 7, and adopting square probing ===
");
ht = initHashTable(7);// the size of HashTable must be prime number;
printf("
=== test for inserting 13, 15, 24, 6 in turn into the hash table ===
");
for(i = 0; i< dataSize; i++)
ht = insert(key[i], ht);
printHashTable(ht);
printf("
=== test for inserting 23 into the hash table ===
");
ht = insert(23, ht);
printHashTable(ht);
printf("
=== test for inserting 40 into the hash table ===
");
ht = insert(40, ht);
printHashTable(ht);
return 0;
}
<font size=4>**3.5)printing result**
![这里写图片描述](http://img.blog.csdn.net/20151027215728355)