zoukankan      html  css  js  c++  java
  • 散列之再散列

    【0】README

    0.1)本文描述总结于 数据结构与算法分析, 但源代码为原创;
    0.2)为什么写这篇博文? 再散列的代码实现 包括了 解决冲突的方法实现;很有代表性;(本源代码采用的解决冲突方法是 平方探测法)


    ##**【1】问题+解决方法** **1.0)开放定址法定义:它是一种不用链接解决冲突的方法:**如果有冲突发生, 那么就要尝试选择另外的单元,知道找出空的单元为止; ![这里写图片描述](http://img.blog.csdn.net/20151027215522048) **1.1)出现的问题:**对于使用平方探测的开放定址散列法,如果表的元素填的太满, 那么操作的运行时间将开始消耗过长,且 insert 操作可能失败, 这可能发生在有 太多的移动和插入混合的场合; **1.2)解决方法:**建立另外一个大约两倍大的表(使用一个相关的新散列函数),扫描整个原始散列表,计算每个元素的新散列值并将其插入到新表中; **1.3)看个荔枝:**
    • 1)将元素13, 15, 24 和 6 插入到大小为 7 的开放定址散列表中:散列函数是 h(X) = X mod 7;设使用线性探测方法解决冲突问题, 插入结果得到的散列表表示在下图中:
      这里写图片描述
    • 2)如果将 23 插入表中, 那么从下图可以看到, 插入后的表将有超过70% 的单元是满的,因为表填得过满, 所以我们建立一个新表;该表的大小为 17, 因为17是原表大小两倍后的第一个素数;新的散列函数为 h(X) = X mod 17;扫描原来的表, 并将元素 6, 15, 23 , 24 以及13 插入到新表中, 如下下图所示:
      这里写图片描述
      这里写图片描述

    ##**【2】再散列** **2.1)定义:**以上整个操作就叫做再散列;显然这是一种非常昂贵的操作, 其运行时间为 O(N),因为有N 个元素要再散列而表的大小约为2N, 不过由于不是经常发生,所以实际效果根本不是那么差; **2.2)再散列的实现:** 再散列可以用平方探测以多种方法实现:
    • 1)一种做法是:只要表满到一半就再散列;
    • 2)另一个极端方法是:只有当插入失败时才再散列;
    • 3)第3种方法即途中策略:当表到达某一个装填因子时进行再散列。由于随着装填因子的增加,表的性能有所下降, 因此,以好的截止手段实现的第三种策略, 可能是最好的策略;

    2.3)再散列的作用:
    再散列就是把 程序员从表大小的担心中解放出来, 这一点很重要, 因为在复杂的程序中散列表不能够做得任意地大;


    ##**【3】源代码+打印结果** **3.1)解决冲突的方法:**我们采用的是平方探测,1,-1,4,-4,...... **3.2)Attention)**在 “再散列”的代码中,我们为 HashTable 添加另一个 capacity 成员,用于和 size 相除构成 装填因子,以便于判断该装填因子是否超出某个值; **3.3)downlaod source code :** https://github.com/pacosonTang/dataStructure-algorithmAnalysis/blob/master/chapter5/p123_rehash.c **3.4)source code at a glance :** ```java #include #include #include

    define ElementType int

    define Error(str) printf(" error: %s ",str)

    struct HashTable;
    typedef struct HashTable *HashTable;
    struct HashEntry;
    typedef struct HashEntry *HashEntry;
    typedef HashEntry EntryArray;

    HashTable initHashTable(int size);
    int find(ElementType key, HashTable ht);
    HashTable insert(ElementType key, HashTable ht);

    enum EntryType {Legitimate, Empty, Deleted};

    struct HashEntry
    {
    ElementType key;
    enum EntryType status;
    };

    struct HashTable
    {
    EntryArray entryArray;
    int capacity;
    int size;
    };

    //judge whether the value is prime or not, also 1 or 0
    int isPrime(int value)
    {
    int temp;
    int flag;

    flag = 1;
    temp = 2;
    while(temp < sqrt(value))
    {
    	if(value % temp == 0)
    		flag = 0;
    	temp++;
    }
    return flag;
    

    }

    // compute the minial prime greater than the value
    int nextPrime(int value)
    {
    value++;
    while(1)
    {
    if(isPrime(value))
    break;
    value++;
    }
    return value;
    }

    // hash function
    int hashFunc(int key, int capacity)
    {
    return key % capacity;
    }

    // the rehash function to expand hash table capacity upto twice capcity
    HashTable rehashFunc(HashTable ht)
    {
    int capacity;
    int oldCapacity;
    int i;
    EntryArray temp;

    temp = ht->entryArray;
    oldCapacity = ht->capacity;
    capacity = nextPrime(ht->capacity * 2);
    ht = initHashTable(capacity);
    
    for(i = 0; i < oldCapacity; i++)
    	if(temp[i].status == Legitimate)
    		insert(temp[i].key, ht);
    free(temp);
    
    return ht;
    

    }

    // initializing HashTable with given size and the table size should be a prime number
    HashTable initHashTable(int capacity)
    {
    HashTable ht;
    int i;

    ht = (HashTable)malloc(sizeof(struct HashTable)); // allocate memory for HashTable
    if(!ht) 
    {
    	Error("out of space, from func initHashTable");
    	return NULL;
    }
    
    ht->capacity = capacity; // the table capacity should be a prime number
    ht->size = 0; // the number the hash table stores element
    ht->entryArray = (HashEntry)malloc(capacity * sizeof(struct HashEntry)); // allocate memory for entry array
    
    for(i = 0; i < capacity; i++) 
    	ht->entryArray[i].status = Empty;
    return ht;
    

    }

    // insert the entry with value key into the Hash Table
    HashTable insert(ElementType key, HashTable ht)
    {
    int index;
    double loadFactor = 0.7; // let the load facotr equals to 0.7, of cource load factor depends on your mind
    double temp;

    index = find(key, ht);
    if(ht->entryArray[index].status != Legitimate)
    {
    	ht->entryArray[index].status = Legitimate;
    	ht->entryArray[index].key = key;
    	ht->size++;
    	// judge whether the load facotr is greater than the certain value
    	temp = (double) ht->size / ht->capacity;		
    	if(temp >= loadFactor)
    		ht = rehashFunc(ht);
    }
    return ht;
    

    }

    // find the index the entry with key should be placed into
    int find(ElementType key, HashTable ht) // find the hash entry with value key
    {
    int index;
    int collisionIndex;
    int minus = -1;
    int temp;

    collisionIndex = 0;
    index = hashFunc(key, ht->capacity); // call the first hash function for allocating empty position for storing the key	
    temp = index;
    while(ht->entryArray[temp].status != Empty && ht->entryArray[temp].key != key ) // adopting square probing
    {
    	if(minus == -1)
    		collisionIndex++;
    	minus *= -1;
    	temp = collisionIndex * collisionIndex * minus;	 		
    	temp = (index + temp) % ht->capacity;
    }		
    return temp;
    

    }

    void printHashTable(HashTable ht)
    {
    ElementType key;
    int i;

    if(!ht)
    	Error("printing execution failure, for hashtable is null, from func printHashTable");	
    
    i = 0;
    while(i < ht->capacity)	
    {
    	printf("
    	 index[%d] = ", i);
    	key = ht->entryArray[i].key;	
    	if(ht->entryArray[i].status == Legitimate)
    		printf("%d", key);			
    	else
    		printf("NULL");
    	printf("  ");		
    	i++;
    }
    printf("
    
    ");
    

    }

    int main()
    {

    HashTable ht = NULL;
    int dataSize = 4;
    int i;
    ElementType key[] = {13, 15, 24, 6};
    
    printf("
    	=== test for rehashing the hash table with load factor 0.7 and capacity 7, and adopting square probing ===
    ");
    ht = initHashTable(7);// the size of HashTable must be prime number;
    
    printf("
    	=== test for inserting 13, 15, 24, 6 in turn into the hash table  ===
    ");
    for(i = 0; i< dataSize; i++)	
    	ht = insert(key[i], ht);	
    printHashTable(ht);	  	
    
    printf("
    	=== test for inserting 23 into the hash table  ===
    ");
    ht = insert(23, ht);	
    printHashTable(ht);	  	
    
    printf("
    	=== test for inserting 40 into the hash table  ===
    ");
    ht = insert(40, ht);	
    printHashTable(ht);	  	
    
    return 0;
    

    }

    <font size=4>**3.5)printing result**
    ![这里写图片描述](http://img.blog.csdn.net/20151027215728355)
  • 相关阅读:
    单行居中,2行居左,超过2行省略
    Angular2环境搭建
    数字保留2位小数
    结束循环函数
    获取元素的定位值
    $.extend
    node使用指南
    Telsa显卡比较
    Jupyter-notebook 不自动打开浏览器解决办法
    teamviewer连接未就绪的解决(Manjaro Linux)
  • 原文地址:https://www.cnblogs.com/pacoson/p/4915757.html
Copyright © 2011-2022 走看看