zoukankan      html  css  js  c++  java
  • 最小生成树——Prim(普利姆)算法

    【0】README

    0.1) 本文总结于 数据结构与算法分析, 源代码均为原创, 旨在 理解Prim算法的idea 并用 源代码加以实现;
    0.2)最小生成树的基础知识,参见 http://blog.csdn.net/pacosonswjtu/article/details/49947085


    【1】Prim算法相关

    1.1)计算最小生成树的一种方法是使其连续地一步一步长成。在每一步, 都要吧一个节点当做根并往上加边,这样也就把相关联的顶点加到增长中的树上;
    1.2)在算法中的任一时刻, 我们都可以看到一个已经添加到树上的顶点集, 而其余顶点尚未加到这颗树中。此时, 算法在每一阶段都可以通过选择边(u, v),使得(u, v)的值是所有u 在树上但v不在树上的边的值中的最小者, 而找出一个新的顶点并吧它添加到这颗树中;
    1.3)具体步骤概括为:

    • step1)给定一个顶点为根节点;
    • step2)每一步加一条边和一个顶点; (这也迎合了 顶点个数-边个数=1 );

    1.4)看个荔枝:

    对上图的分析(Analysis):
    A1)可以看到, 其实Prim算法基本上和求最短路径的 Dijkstra算法一样, 因此和前面一样,我们对每一个顶点保留值 Dv和Pv 以及一个指标,指示该顶点是已知的还是未知的。这里,Dv是连接v 到已知顶点的最短边的权, 而 Pv则是导致Dv改变的最后的顶点。
    A2)算法的其余部分一样, 唯一不同的是: ** 由于Dv的定义不同, 因此它的更新法则不一样。事实上,Prim算法的更新法则比 Dijkstra算法简单:在每一个顶点v被选取后, 对于每一个与 v 邻接的未知的w, Dw=min(Dw, Cw,v);
    这里写图片描述
    对上图的分析(Analysis):
    A1)该算法整个的实现实际上和 Dijkstra算法的实现是一样的, 对于 Dijkstra算法分析所做的每一件事都可以用到这里。 不过要注意, Prim算法是在无向图上运行的, 因此当编写代码的时候要记住要吧每一条变都要放到两个邻接表中。
    A2)**不用堆时的运行时间为O(|V|^2), 它对于稠密图来说是最优的; 使用二叉堆的运行时间为 O(|E|log|V|), 它对于稀疏图是一个好的界限;


    【2】source code + printing results(将我的代码打印结果 同 上图中的手动模拟的prim算法的结果进行比较,你会发现, 它们的结果完全相同,这也证实了我的代码的可行性)

    2.1)download source code: https://github.com/pacosonTang/dataStructure-algorithmAnalysis/tree/master/chapter9/p237_prim
    2.2)source code at a glance(for complete code , please click the given link above):

    #include "prim.h"
    
    //allocate the memory for initializing unweighted table
    WeightedTable *initWeightedTable(int size)
    {	
    	WeightedTable* table;
    	int i;
    
    	table = (WeightedTable*)malloc(sizeof(WeightedTable) * size);
    	if(!table)
    	{
    		Error("out of space ,from func initWeightedTable");
    		return NULL;
    	}
    
    	for(i = 0; i < size; i++)
    	{
    		table[i] = makeEmptyWeightedTable();		
    		if(!table[i])
    			return NULL;
    	}
    
    	return table;
    } 
    
    // allocate the memory for every element in unweighted table  
    WeightedTable makeEmptyWeightedTable()
    {
    	WeightedTable element;
    
    	element = (WeightedTable)malloc(sizeof(struct WeightedTable));
    	if(!element)
    	{
    		Error("out of space ,from func makeEmptyWeightedTable");
    		return NULL;
    	}	
    	element->known = 0; // 1 refers to accessed , also 0 refers to not accessed
    	element->distance = MaxInt;
    	element->path = -1; // index starts from 0 and -1 means the startup vertex unreaches other vertexs
    
    	return element;
    }
    
    // allocate the memory for storing index of  vertex in heap and let every element -1
    int *makeEmptyArray(int size)
    {
    	int *array;
    	int i;
    
    	array = (int*)malloc(size * sizeof(int));
    	if(!array)
    	{
    		Error("out of space ,from func makeEmptyArray");
    		return NULL;
    	}		
    	for(i=0; i<size; i++)
    		array[i] = -1;
    
    	return array;
    }
    
    //computing the unweighted shortest path between the vertex under initIndex and other vertexs
    void prim(AdjTable* adj, int size, int startVertex, BinaryHeap bh)
    {		
    	int adjVertex;	
    	int tempDistance;
    	WeightedTable* table;
    	int vertex;		
    	AdjTable temp; 	
    	Distance tempDisStruct;
    	int *indexOfVertexInHeap;
    	int indexOfHeap;
    
    	table = initWeightedTable(size);	 	
    	tempDisStruct = makeEmptyDistance();
    	indexOfVertexInHeap = makeEmptyArray(size);
    	
    	tempDisStruct->distance = table[startVertex-1]->distance;
        tempDisStruct->vertexIndex = startVertex-1;
    	insert(tempDisStruct, bh, indexOfVertexInHeap); // insert the (startVertex-1) into the binary heap	
    
    	table[startVertex-1]->distance = 0;// update the distance 
    	table[startVertex-1]->path = 0;// update the path of starting vertex
    
    	while(!isEmpty(bh))
    	{		
    		vertex = deleteMin(bh, indexOfVertexInHeap).vertexIndex; // return the minimal element in binary heap
    		//printBinaryHeap(bh);
    
     		table[vertex]->known = 1; // update the vertex as accessed, also let responding known be 1
    		temp = adj[vertex]->next;
    		while(temp)
    		{
    			adjVertex = temp->index; 
    			if(table[adjVertex]->known == 1) // judge whether table[adjVertex]->known is 1 or not
    			{
    				temp = temp->next;
    				continue;
    			}
    
    			//tempDistance = table[vertex]->distance + temp->weight; // update the distance
    			tempDistance = temp->weight;
    			if(tempDistance < table[adjVertex]->distance)
    			{
    				table[adjVertex]->distance = tempDistance;
    				table[adjVertex]->path = vertex; //update the path of adjVertex, also responding path evaluated as vertex							
    				
    				// key, we should judge whether adjVertex was added into the binary heap				
    				//if true , obviously the element has been added into the binary heap(so we can't add the element into heap once again)
    				if(indexOfVertexInHeap[adjVertex] != -1) 
    				{
    					indexOfHeap = indexOfVertexInHeap[adjVertex];
    					bh->elements[indexOfHeap]->distance = tempDistance; // update the distance of corresponding vertex in binary heap
    				}
    				else // if not ture
    				{
    					tempDisStruct->distance = table[adjVertex]->distance;
    					tempDisStruct->vertexIndex = adjVertex;
    					insert(tempDisStruct, bh, indexOfVertexInHeap); // insert the adjVertex into the binary heap
    				}
    			}			 
    			temp = temp->next;		
    		}		
    		printPrim(table, size, startVertex);		
    		printBinaryHeap(bh);
    		printf("
    ");
    	}		
    	
    	printf("
    ");
    } 
    
    //print unweighted table
    void printPrim(WeightedTable* table, int size, int startVertex)
    {
    	int i;	
    	char *str[4] = 
    	{
    		"vertex",
    		"known",
    		"distance",
    		"path"
    	};
    
    	printf("
    	 === storage table related to Prim alg as follows: === ");	
    	printf("
    	 %6s%6s%9s%5s", str[0], str[1], str[2], str[3]);	
    	for(i=0; i<size; i++)
    	{		
    		if(i != startVertex-1 && table[i]->path!=-1) 
    			printf("
    	 %-3d   %3d   %5d      v%-3d  ", i+1, table[i]->known, table[i]->distance, table[i]->path+1);
    		else if(table[i]->path == -1)
    			printf("
    	 %-3d   %3d   %5d      %-3d  ", i+1, table[i]->known, table[i]->distance, table[i]->path);
    		else
    			printf("
    	 *%-3d  %3d   %5d      %-3d  ", i+1, table[i]->known, table[i]->distance, 0);
    	}	 
    }
    
    int main()
    { 
    	AdjTable* adj;	
    	BinaryHeap bh;
    	int size = 7;
    	int capacity;
    	int i;
    	int j;	
    	int startVertex;
    	 
    	int adjTable[7][7] = 
    	{
    		{0, 2, 4, 1, 0, 0, 0},
    		{2, 0, 0, 3, 10, 0, 0},
    		{4, 0, 0, 2, 0, 5, 0},
    		{1, 3, 2, 0, 7, 8, 4},
    		{0, 10, 0, 7, 0, 0, 6},
    		{0, 0, 5, 8, 0, 0, 1},
    		{0, 0, 0, 4, 6, 1, 0},
    	};
    
    	printf("
    
    	 ====== test for Prim alg finding weighted shortest path from adjoining table ======
    ");
    	adj = initAdjTable(size);		
    	
    	printf("
    
    	 ====== the initial weighted adjoining table is as follows:======
    ");
    	for(i = 0; i < size; i++)
    	 	for(j = 0; j < size; j++)	
    			if(adjTable[i][j])			
    				insertAdj(adj, j, i, adjTable[i][j]); // insertAdj the adjoining table over
    	
    	printAdjTable(adj, size);	
    	
    	capacity = 7;
    	bh = initBinaryHeap(capacity+1);
    	//conducting prim alg to find minimum spanning tree(MST)
    	startVertex = 1; // you should know our index for storing vertex starts from 0
    	prim(adj, size, startVertex, bh);	
    	
    	return 0;
    } 
    
    

    2.3)printing results:

    这里写图片描述
    这里写图片描述
    这里写图片描述

  • 相关阅读:
    Suricata的输出
    Setting up IPS/inline for Linux in Suricata
    Suricata的初始化脚本
    Suricata的Reputation
    Suricata的配置
    Suricata的性能
    Suricata里的规则与Snort区别之处
    Suricata的命令行解释
    [转]ASP.NET 成员资格 Part.1(API)
    [转]ASP.NET MVC4+BootStrap 实战(一)
  • 原文地址:https://www.cnblogs.com/pacoson/p/4980911.html
Copyright © 2011-2022 走看看