zoukankan      html  css  js  c++  java
  • 最小二乘法-公式推导

    基本思想

    求出这样一些未知参数使得样本点和拟合线的总误差(距离)最小

    最直观的感受如下图(图引用自知乎某作者)

    而这个误差(距离)可以直接相减,但是直接相减会有正有负,相互抵消了,所以就用差的平方

    推导过程

    1 写出拟合方程
    (y = a+bx)

    2 现有样本((x_1, y_1),(x_2, y_2)...(x_n, y_n))

    3 设(d_i)为样本点到拟合线的距离,即误差
    (d_i=y_i-(a+bx_i))

    4 设(D)为差方和(为什么要取平方前面已说,防止正负相互抵消)
    (D=sumlimits_{i=1}^{n}d_i^2=sumlimits_{i=1}^{n}(y_i-a-bx_i)^2)

    5 根据一阶导数等于0,二阶大于等于0(证明略)求出未知参数
    对a求一阶偏导
    ( egin{aligned} frac{partial D}{partial a} &=sumlimits_{i=1}^{n}2(y_i-a-bx_i)(-1)\ &=-2sumlimits_{i=1}^{n}(y_i-a-bx_i)\ end{aligned} )
    ( egin{aligned} &=-2(sumlimits_{i=1}^{n}y_i-sumlimits_{i=1}^{n}a-bsumlimits_{i=1}^{n}x_i)\ &=-2(nar{y}-na-nbar{x}) end{aligned} )

    对b求一阶偏导
    ( egin{aligned} frac{partial D}{partial b} &=sumlimits_{i=1}^{n}2(y_i-a-bx_i)(-x_i)\ &=-2sumlimits_{i=1}^{n}(x_iy_i-ax_i-bx_i^2)\ end{aligned} )
    ( egin{aligned} &=-2(sumlimits_{i=1}^{n}x_iy_i-asumlimits_{i=1}^{n}x_i-bsumlimits_{i=1}^{n}x_i^2)\ &=-2(sumlimits_{i=1}^{n}x_iy_i-naar{x}-bsumlimits_{i=1}^{n}x_i^2) end{aligned} )

    令偏导等于0得
    (-2(nar{y}-na-nbar{x})=0)
    (=> color{red}{a=ar{y}-bar{x}})

    (-2(sumlimits_{i=1}^{n}x_iy_i-naar{x}-bsumlimits_{i=1}^{n}x_i^2)=0)并将(a=ar{y}-bar{x})带入化简得
    (=>sumlimits_{i=1}^{n}x_iy_i-nar{x}ar{y}+nbar{x}^2-bsumlimits_{i=1}^{n}x_i^2=0)
    (=>sumlimits_{i=1}^{n}x_iy_i-nar{x}ar{y}=b(sumlimits_{i=1}^{n}x_i^2-nar{x}^2))
    (=>b=frac{sumlimits_{i=1}^{n}x_iy_i-nar{x}ar{y}}{sumlimits_{i=1}^{n}x_i^2-nar{x}^2})

    因为( equire{cancel}sumlimits_{i=1}^{n}(x_i-ar{x})(y_i-ar{y})=sumlimits_{i-1}^{n}(x_iy_i-ar{x}y_i-x_iar{y}+ar{x}ar{y})=sumlimits_{i=1}^{n}x_iy_i-nar{x}ar{y}-cancel{nar{x}ar{y}}+cancel{nar{x}ar{y}})
    (sumlimits_{i=1}^{n}(x_i-ar{x})^2=sumlimits_{i-1}^{n}(x_i^2-2ar{x}x_i+ar{x}^2)=sumlimits_{i=1}^{n}x_i^2-2nar{x}^2+nar{x}^2=sumlimits_{i=1}^{n}x_i^2-nar{x}^2)

    所以将其带入上式得(color{red}{b=frac{sumlimits_{i=1}^{n}(x_i-ar{x})(y_i-ar{y})}{sumlimits_{i=1}^{n}(x_i-ar{x})^2}})

  • 相关阅读:
    11-UIKit(Storyboard、View的基本概念、绘制图形、UIBezierPath)
    10-UIKit(UIDatePicker、UIPickerView、UIWebView、Storyboard)
    09-UIKit(UICollectionViewController、UITabBarController)
    ios7 UITableView底线右移
    08-UIKit(UITableTableViewCell、自定义Cell、xcode调试)
    07-UIKit(tableview的编辑模式、accessoryView)
    06-UIKit(tableView数据模型)
    05-UIKit(UITableViewController)
    04-UIKit(UINavigationController、NSAttributeString、UIImageView)
    HDU 4422 采蘑菇的小女孩
  • 原文地址:https://www.cnblogs.com/paiandlu/p/7843236.html
Copyright © 2011-2022 走看看