zoukankan      html  css  js  c++  java
  • 你知道你的电脑 1 秒钟能做多少事情吗?

    让我们来看看你有多么了解电脑!所有这些程序的数值都是可变的。你的任务是:在程序花费1秒运行之前猜测它的大概值。

    你并不需要猜出一个精确值:选择范围在1和10亿之间。你只要能猜出正确的数量级,就算正确!下面是一些注意事项:

    • 如果答案是38,000,那么你选择10,000或100,000,我们就认为都是正确答案。误差只要在10倍范围内就ok:)
    • 我们知道不同的计算机有不同的磁盘、网络和CPU速度!我们会告诉运行10次/秒和10万次/秒的代码之间的差别。更新的电脑不会让你的代码运行速度快1000倍:)
    • 也就是说,所有这一切都是运行在一台新的拥有一个快速的SSD和一个凑合的网络连接的笔记本电脑上的。 C代码用gcc -O2编译。

    祝你好运!

    欢迎来到第一个程序!这一个只是让你练练手的:1秒能完成多少循环? (结果可能比你想象得更多!)

    猜猜下面的程序每秒执行多少次循环:

    加群923414804免费获取数十套PDF资料

    #include <stdlib.h>
    
    // Number to guess: How many iterations of
    // this loop can we go through in a second?
    
    int main(int argc, char **argv) {
        int NUMBER, i, s;
        NUMBER = atoi(argv[1]);
    
        for (s = i = 0; i < NUMBER; ++i) {
            s += 1;
        }
    
        return 0;
    }

    准确答案:550,000,000

    猜猜下面的程序每秒执行多少次循环:

    #!/usr/bin/env python
    
    # Number to guess: How many iterations of an
    # empty loop can we go through in a second?
    
    def f(NUMBER):
        for _ in xrange(NUMBER):
            pass
    
    import sys
    f(int(sys.argv[1]))

    准确答案:68,000,000

    当我看着代码的时候,我想的是1毫秒完成多少次——我以为是微不足道的,但事实是,即使是Python,你也可以在1毫秒的时间内执行68,000次空循环迭代。

    下面让我们来探讨一个更接近现实的用例。在Python中字典几乎是无处不在的,那么在1秒时间内我们可以用Python添加多少元素呢?
    然后再来看一个更复杂的操作——使用Python的内置HTTP请求解析器来解析请求。

    猜猜下面的程序每秒执行多少次循环:

    #!/usr/bin/env python
    
    # Number to guess: How many entries can
    # we add to a dictionary in a second?
    
    # Note: we take `i % 1000` to control
    # the size of the dictionary
    
    def f(NUMBER):
        d = {}
        for i in xrange(NUMBER):
            d[i % 1000] = i
    
    import sys
    f(int(sys.argv[1]))

    准确答案:11,000,000

    猜猜下面的程序每秒处理多少次HTTP请求:

    #!/usr/bin/env python
    
    # Number to guess: How many HTTP requests
    # can we parse in a second?
    
    from BaseHTTPServer import BaseHTTPRequestHandler
    from StringIO import StringIO
    
    class HTTPRequest(BaseHTTPRequestHandler):
        def __init__(self, request_text):
            self.rfile = StringIO(request_text)
            self.raw_requestline = self.rfile.readline()
            self.error_code = self.error_message = None
            self.parse_request()
    
        def send_error(self, code, message):
            self.error_code = code
            self.error_message = message
    
    request_text = """GET / HTTP/1.1
    Host: localhost:8001
    Connection: keep-alive
    Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8
    Upgrade-Insecure-Requests: 1
    User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/45.0.2454.85 Safari/537.36
    Accept-Encoding: gzip, deflate, sdch
    Accept-Language: en-GB,en-US;q=0.8,en;q=0.6
    """
    
    def f(NUMBER):
        for _ in range(NUMBER):
            HTTPRequest(request_text)
    
    import sys
    f(int(sys.argv[1]))

    准确答案:25,000

    我们每秒可以解析25,000个小的HTTP请求!有一件事我要在这里指出的是,这里请求解析的代码是用纯Python编写的,而不是C。

    接下来,我们要试试下载网页与运行Python脚本!提示:少于1亿:)

    猜猜下面的程序每秒可以完成多少次HTTP请求:

    #!/usr/bin/env python
    
    # Number to guess: How many times can we
    # download google.com in a second?
    
    from urllib2 import urlopen
    
    def f(NUMBER):
        for _ in xrange(NUMBER):
            r = urlopen("http://google.com")
            r.read()
    
    import sys
    f(int(sys.argv[1]))

    准确答案:4

    猜猜下面的程序每秒可以执行多少次循环:

    #!/bin/bash
    
    # Number to guess: How many times can we start
    # the Python interpreter in a second?
    
    NUMBER=$1
    
    for i in $(seq $NUMBER); do
        python -c '';
    done

    准确答案:77

    启动程序实际上昂贵在其本身,而不是启动Python。如果我们只是运行/bin/true,那么1秒能做500次,所以看起来运行任何程序只需要大约1毫秒时间。当然,下载网页的快慢很大程度上取决于网页大小,网络连接速度,以及服务器间的距离,不过今天我们不谈网络性能。我的一个朋友说,高性能的网络完成网络往返甚至可能只要250纳秒(!!!),但这是在计算机位置更相邻,硬件更好的情况下。

    1秒时间能够在磁盘中写入多少字节?我们都知道写到内存中时速度会更快,但是究竟会快多少呢?对了,下面的代码运行在带有SSD的计算机上。

    猜猜下面的程序每秒可以写入多少字节数据:

    #!/usr/bin/env python
    
    # Number to guess: How many bytes can we write
    # to an output file in a second?
    # Note: we make sure everything is sync'd to disk
    # before exiting
    import tempfile
    import os
    
    CHUNK_SIZE = 1000000
    s = "a" * CHUNK_SIZE
    
    def cleanup(f, name):
        f.flush()
        os.fsync(f.fileno())
        f.close()
        try:
            os.remove(name)
        except:
            pass
    
    def f(NUMBER):
        name = './out'
        f = open(name, 'w')
        bytes_written = 0
        while bytes_written < NUMBER:
            f.write(s)
            bytes_written += CHUNK_SIZE
        cleanup(f, name)
    
    import sys
    f(int(sys.argv[1]))

    准确答案:342,000,000

    猜猜下面的程序每秒可以写入多少字节数据:

    #!/usr/bin/env python
    
    # Number to guess: How many bytes can we write
    # to a string in memory in a second?
    
    import cStringIO
    
    CHUNK_SIZE = 1000000
    s = "a" * CHUNK_SIZE
    
    def f(NUMBER):
        output = cStringIO.StringIO()
        bytes_written = 0
        while bytes_written < NUMBER:
            output.write(s)
            bytes_written += CHUNK_SIZE
    
    import sys
    f(int(sys.argv[1]))

    准确答案:2,000,000,000

    下面轮到文件了!有时候,运行一个大型的grep之后,它可以永恒跑下去。在1秒时间内,grep可以搜索多少字节?
    请注意,在这么做的时候,grep正在读取的字节已经在内存中。
    文件列表同样需要时间!1秒能列出多少文件?

    猜猜下面的程序每秒可以搜索多少字节的数据:

    #!/bin/bash 
    
    # Number to guess: How many bytes can `grep`
    # search, unsuccessfully, in a second?
    # Note: the bytes are in memory
    
    NUMBER=$1
    
    cat /dev/zero | head -c $NUMBER | grep blah
    exit 0

    准确答案:2,000,000,000

    猜猜下面的程序每秒可以列出多少文件:

    #!/bin/bash
    
    # Number to guess: How many files can `find` list in a second?
    # Note: the files will be in the filesystem cache.
    
    find / -name '*' 2> /dev/null | head -n $1 > /dev/null

    准确答案:325,000

    序列化是一个普遍要花费大量时间的地方,让人很蛋疼,特别是如果你反复结束序列化/反序列化相同数据的时候。这里有几个基准:转换64K大小的JSON格式数据,与同样大小的msgpack格式数据。

    猜猜下面的程序每秒可以执行多少次循环:

    #!/usr/bin/env python
    
    # Number to guess: How many times can we parse
    # 64K of JSON in a second?
    
    import json
    
    with open('./setup/protobuf/message.json') as f:
        message = f.read()
    
    def f(NUMBER):
        for _ in xrange(NUMBER):
            json.loads(message)
    
    import sys
    f(int(sys.argv[1]))

    准确答案:449

    猜猜下面的程序每秒可以执行多少次循环:

    #!/usr/bin/env python
    
    # Number to guess: How many times can we parse
    # 46K of msgpack data in a second?
    
    import msgpack
    
    with open('./setup/protobuf/message.msgpack') as f:
        message = f.read()
    
    def f(NUMBER):
        for _ in xrange(NUMBER):
            msgpack.unpackb(message)
    
    import sys
    f(int(sys.argv[1]))

    准确答案:4,000

    数据库。没有任何类似于PostgreSQL花里胡哨的东西,我们做了2份有1000万行数据的SQLite表,一个是有索引的,另一个是未建索引的。

    猜猜下面的程序每秒可以执行多少次查询:

    #!/usr/bin/env python
    
    # Number to guess: How many times can we
    # select a row from an **indexed** table with 
    # 10,000,000 rows?
    
    import sqlite3
    
    conn = sqlite3.connect('./indexed_db.sqlite')
    c = conn.cursor()
    def f(NUMBER):
        query = "select * from my_table where key = %d" % 5
        for i in xrange(NUMBER):
            c.execute(query)
            c.fetchall()
    
    import sys
    f(int(sys.argv[1]))

    准确答案:53,000

    猜猜下面的程序每秒执行多少次查询:

    #!/usr/bin/env python
    
    # Number to guess: How many times can we
    # select a row from an **unindexed** table with 
    # 10,000,000 rows?
    
    import sqlite3
    
    conn = sqlite3.connect('./unindexed_db.sqlite')
    c = conn.cursor()
    def f(NUMBER):
        query = "select * from my_table where key = %d" % 5
        for i in xrange(NUMBER):
            c.execute(query)
            c.fetchall()
    
    import sys
    f(int(sys.argv[1]))

    准确答案:2

    下面要说Hash算法!在这里,我们将比较MD5和bcrypt。用MD5你在1秒时间内可以哈希到相当多的东西,而用bcrypt则不能。

    猜猜下面的程序每秒可以哈希多少字节的数据:

    #!/usr/bin/env python
    
    # Number to guess: How many bytes can we md5sum in a second?
    
    import hashlib
    
    CHUNK_SIZE = 10000
    s = 'a' * CHUNK_SIZE
    
    def f(NUMBER):
        bytes_hashed = 0
        h = hashlib.md5()
        while bytes_hashed < NUMBER:
            h.update(s)
            bytes_hashed += CHUNK_SIZE
        h.digest()
    import sys
    f(int(sys.argv[1]))

    准确答案:455,000,000

    猜猜下面的程序每秒可以哈希多少字节的密码:

    #!/usr/bin/env python
    
    # Number to guess: How many passwords
    # can we bcrypt in a second?
    
    import bcrypt
    
    password = 'a' * 100
    
    def f(NUMBER):
        for _ in xrange(NUMBER):
            bcrypt.hashpw(password, bcrypt.gensalt())
    
    import sys
    f(int(sys.argv[1]))

    准确答案:3

    接下来,我们要说一说内存访问。 现在的CPU有L1和L2缓存,这比主内存访问速度更快。这意味着,循序访问内存通常比不按顺序访问内存能提供更快的代码。

    猜猜下面的程序每秒可以向内存写入多少字节数据:

    #include <stdlib.h>
    #include <stdio.h>
    
    // Number to guess: How big of an array (in bytes)
    // can we allocate and fill in a second?
    
    // this is intentionally more complicated than it needs to be
    // so that it matches the out-of-order version
    
    int main(int argc, char **argv) {
        int NUMBER, i;
        NUMBER = atoi(argv[1]);
    
        char* array = malloc(NUMBER);
        int j = 1;
        for (i = 0; i < NUMBER; ++i) {
            j = j * 2;
            if (j > NUMBER) {
                j = j - NUMBER;
            }
            array[i] = j;
        }
    
        printf("%d", array[NUMBER / 7]);
        // so that -O2 doesn't optimize out the loop
    
        return 0;
    }

    准确答案:376,000,000

    猜猜下面的程序每秒可以向内存写入多少字节数据:

    #include <stdlib.h>
    #include <stdio.h>
    
    // Number to guess: How big of an array (in bytes)
    // can we allocate and fill with 5s in a second?
    // The catch: We do it out of order instead of in order.
    int main(int argc, char **argv) {
        int NUMBER, i;
        NUMBER = atoi(argv[1]);
    
        char* array = malloc(NUMBER);
        int j = 1;
        for (i = 0; i < NUMBER; ++i) {
            j = j * 2;
            if (j > NUMBER) {
                j = j - NUMBER;
            }
            array[j] = j;
        }
    
        printf("%d", array[NUMBER / 7]);
        // so that -O2 doesn't optimize out the loop
    
        return 0;
    }

    准确答案:68,000,000

    欢迎大家去试一试,给我们留下宝贵的意见。

  • 相关阅读:
    正则表达式
    Event flow(事件流)
    Regular Expression(验证账号密码邮箱身份证)
    constructor&object 的联系与区别
    BMAP
    for each in 与for in与for of
    History of program
    脑图(作业)
    对DOM的认识
    BOM的认识
  • 原文地址:https://www.cnblogs.com/paisenpython/p/10281203.html
Copyright © 2011-2022 走看看