zoukankan      html  css  js  c++  java
  • 开始 Keras 序列模型(Sequential model)

    开始 Keras 序列模型(Sequential model)

    序列模型是一个线性的层次堆栈。
    你可以通过传递一系列 layer 实例给构造器来创建一个序列模型。

    The Sequential model is a linear stack of layers.

    You can create a Sequential model by passing a list of layer instances to the constructor:

    from keras.models import Sequential
    from keras.layers import Dense, Activation
    
    model = Sequential([
        Dense(32, input_shape=(784,)),
        Activation('relu'),
        Dense(10),
        Activation('softmax'),
    ])

    也可以简单的添加 layer 通过 .add() 函数。

    You can also simply add layers via the .add() method:

    model = Sequential()
    model.add(Dense(32, input_dim=784))
    model.add(Activation('relu'))

    Specifying the input shape

    The model needs to know what input shape it should expect. For this reason, the first layer in a Sequential model (and only the first, because following layers can do automatic shape inference) needs to receive information about its input shape. There are several possible ways to do this:

    • Pass an input_shape argument to the first layer. This is a shape tuple (a tuple of integers or None entries, where None indicates that any positive integer may be expected). In input_shape, the batch dimension is not included.
    • Some 2D layers, such as Dense, support the specification of their input shape via the argument input_dim, and some 3D temporal layers support the arguments input_dim and input_length.
    • If you ever need to specify a fixed batch size for your inputs (this is useful for stateful recurrent networks), you can pass a batch_size argument to a layer. If you pass both batch_size=32 and input_shape=(6, 8) to a layer, it will then expect every batch of inputs to have the batch shape (32, 6, 8).

    As such, the following snippets are strictly equivalent:

    model = Sequential()
    model.add(Dense(32, input_shape=(784,)))
    model = Sequential()
    model.add(Dense(32, input_dim=784))

    Compilation

    Before training a model, you need to configure the learning process, which is done via the compile method. It receives three arguments:

    • An optimizer. This could be the string identifier of an existing optimizer (such as rmsprop or adagrad), or an instance of the Optimizer class. See: optimizers.
    • A loss function. This is the objective that the model will try to minimize. It can be the string identifier of an existing loss function (such as categorical_crossentropy or mse), or it can be an objective function. See: losses.
    • A list of metrics. For any classification problem you will want to set this to metrics=['accuracy']. A metric could be the string identifier of an existing metric or a custom metric function.
    # For a multi-class classification problem
    model.compile(optimizer='rmsprop',
                  loss='categorical_crossentropy',
                  metrics=['accuracy'])
    
    # For a binary classification problem
    model.compile(optimizer='rmsprop',
                  loss='binary_crossentropy',
                  metrics=['accuracy'])
    
    # For a mean squared error regression problem
    model.compile(optimizer='rmsprop',
                  loss='mse')
    
    # For custom metrics
    import keras.backend as K
    
    def mean_pred(y_true, y_pred):
        return K.mean(y_pred)
    
    model.compile(optimizer='rmsprop',
                  loss='binary_crossentropy',
                  metrics=['accuracy', mean_pred])

    Training

    Keras models are trained on Numpy arrays of input data and labels. For training a model, you will typically use the fit function. Read its documentation here.

    # For a single-input model with 2 classes (binary classification):
    
    model = Sequential()
    model.add(Dense(32, activation='relu', input_dim=100))
    model.add(Dense(1, activation='sigmoid'))
    model.compile(optimizer='rmsprop',
                  loss='binary_crossentropy',
                  metrics=['accuracy'])
    
    # Generate dummy data
    import numpy as np
    data = np.random.random((1000, 100))
    labels = np.random.randint(2, size=(1000, 1))
    
    # Train the model, iterating on the data in batches of 32 samples
    model.fit(data, labels, epochs=10, batch_size=32)
    # For a single-input model with 10 classes (categorical classification):
    
    model = Sequential()
    model.add(Dense(32, activation='relu', input_dim=100))
    model.add(Dense(10, activation='softmax'))
    model.compile(optimizer='rmsprop',
                  loss='categorical_crossentropy',
                  metrics=['accuracy'])
    
    # Generate dummy data
    import numpy as np
    data = np.random.random((1000, 100))
    labels = np.random.randint(10, size=(1000, 1))
    
    # Convert labels to categorical one-hot encoding
    one_hot_labels = keras.utils.to_categorical(labels, num_classes=10)
    
    # Train the model, iterating on the data in batches of 32 samples
    model.fit(data, one_hot_labels, epochs=10, batch_size=32)

    Examples

    Here are a few examples to get you started!

    In the examples folder, you will also find example models for real datasets:

    • CIFAR10 small images classification: Convolutional Neural Network (CNN) with realtime data augmentation
    • IMDB movie review sentiment classification: LSTM over sequences of words
    • Reuters newswires topic classification: Multilayer Perceptron (MLP)
    • MNIST handwritten digits classification: MLP & CNN
    • Character-level text generation with LSTM

    …and more.

    Multilayer Perceptron (MLP) for multi-class softmax classification:

    from keras.models import Sequential
    from keras.layers import Dense, Dropout, Activation
    from keras.optimizers import SGD
    
    # Generate dummy data
    import numpy as np
    x_train = np.random.random((1000, 20))
    y_train = keras.utils.to_categorical(np.random.randint(10, size=(1000, 1)), num_classes=10)
    x_test = np.random.random((100, 20))
    y_test = keras.utils.to_categorical(np.random.randint(10, size=(100, 1)), num_classes=10)
    
    model = Sequential()
    # Dense(64) is a fully-connected layer with 64 hidden units.
    # in the first layer, you must specify the expected input data shape:
    # here, 20-dimensional vectors.
    model.add(Dense(64, activation='relu', input_dim=20))
    model.add(Dropout(0.5))
    model.add(Dense(64, activation='relu'))
    model.add(Dropout(0.5))
    model.add(Dense(10, activation='softmax'))
    
    sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
    model.compile(loss='categorical_crossentropy',
                  optimizer=sgd,
                  metrics=['accuracy'])
    
    model.fit(x_train, y_train,
              epochs=20,
              batch_size=128)
    score = model.evaluate(x_test, y_test, batch_size=128)

    MLP for binary classification:

    import numpy as np
    from keras.models import Sequential
    from keras.layers import Dense, Dropout
    
    # Generate dummy data
    x_train = np.random.random((1000, 20))
    y_train = np.random.randint(2, size=(1000, 1))
    x_test = np.random.random((100, 20))
    y_test = np.random.randint(2, size=(100, 1))
    
    model = Sequential()
    model.add(Dense(64, input_dim=20, activation='relu'))
    model.add(Dropout(0.5))
    model.add(Dense(64, activation='relu'))
    model.add(Dropout(0.5))
    model.add(Dense(1, activation='sigmoid'))
    
    model.compile(loss='binary_crossentropy',
                  optimizer='rmsprop',
                  metrics=['accuracy'])
    
    model.fit(x_train, y_train,
              epochs=20,
              batch_size=128)
    score = model.evaluate(x_test, y_test, batch_size=128)

    VGG-like convnet:

    import numpy as np
    import keras
    from keras.models import Sequential
    from keras.layers import Dense, Dropout, Flatten
    from keras.layers import Conv2D, MaxPooling2D
    from keras.optimizers import SGD
    
    # Generate dummy data
    x_train = np.random.random((100, 100, 100, 3))
    y_train = keras.utils.to_categorical(np.random.randint(10, size=(100, 1)), num_classes=10)
    x_test = np.random.random((20, 100, 100, 3))
    y_test = keras.utils.to_categorical(np.random.randint(10, size=(20, 1)), num_classes=10)
    
    model = Sequential()
    # input: 100x100 images with 3 channels -> (100, 100, 3) tensors.
    # this applies 32 convolution filters of size 3x3 each.
    model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(100, 100, 3)))
    model.add(Conv2D(32, (3, 3), activation='relu'))
    model.add(MaxPooling2D(pool_size=(2, 2)))
    model.add(Dropout(0.25))
    
    model.add(Conv2D(64, (3, 3), activation='relu'))
    model.add(Conv2D(64, (3, 3), activation='relu'))
    model.add(MaxPooling2D(pool_size=(2, 2)))
    model.add(Dropout(0.25))
    
    model.add(Flatten())
    model.add(Dense(256, activation='relu'))
    model.add(Dropout(0.5))
    model.add(Dense(10, activation='softmax'))
    
    sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
    model.compile(loss='categorical_crossentropy', optimizer=sgd)
    
    model.fit(x_train, y_train, batch_size=32, epochs=10)
    score = model.evaluate(x_test, y_test, batch_size=32)

    Sequence classification with LSTM:

    from keras.models import Sequential
    from keras.layers import Dense, Dropout
    from keras.layers import Embedding
    from keras.layers import LSTM
    
    model = Sequential()
    model.add(Embedding(max_features, output_dim=256))
    model.add(LSTM(128))
    model.add(Dropout(0.5))
    model.add(Dense(1, activation='sigmoid'))
    
    model.compile(loss='binary_crossentropy',
                  optimizer='rmsprop',
                  metrics=['accuracy'])
    
    model.fit(x_train, y_train, batch_size=16, epochs=10)
    score = model.evaluate(x_test, y_test, batch_size=16)

    Sequence classification with 1D convolutions:

    from keras.models import Sequential
    from keras.layers import Dense, Dropout
    from keras.layers import Embedding
    from keras.layers import Conv1D, GlobalAveragePooling1D, MaxPooling1D
    
    model = Sequential()
    model.add(Conv1D(64, 3, activation='relu', input_shape=(seq_length, 100)))
    model.add(Conv1D(64, 3, activation='relu'))
    model.add(MaxPooling1D(3))
    model.add(Conv1D(128, 3, activation='relu'))
    model.add(Conv1D(128, 3, activation='relu'))
    model.add(GlobalAveragePooling1D())
    model.add(Dropout(0.5))
    model.add(Dense(1, activation='sigmoid'))
    
    model.compile(loss='binary_crossentropy',
                  optimizer='rmsprop',
                  metrics=['accuracy'])
    
    model.fit(x_train, y_train, batch_size=16, epochs=10)
    score = model.evaluate(x_test, y_test, batch_size=16)

    Stacked LSTM for sequence classification

    In this model, we stack 3 LSTM layers on top of each other,
    making the model capable of learning higher-level temporal representations.

    The first two LSTMs return their full output sequences, but the last one only returns
    the last step in its output sequence, thus dropping the temporal dimension
    (i.e. converting the input sequence into a single vector).

    stacked LSTM

    from keras.models import Sequential
    from keras.layers import LSTM, Dense
    import numpy as np
    
    data_dim = 16
    timesteps = 8
    num_classes = 10
    
    # expected input data shape: (batch_size, timesteps, data_dim)
    model = Sequential()
    model.add(LSTM(32, return_sequences=True,
                   input_shape=(timesteps, data_dim)))  # returns a sequence of vectors of dimension 32
    model.add(LSTM(32, return_sequences=True))  # returns a sequence of vectors of dimension 32
    model.add(LSTM(32))  # return a single vector of dimension 32
    model.add(Dense(10, activation='softmax'))
    
    model.compile(loss='categorical_crossentropy',
                  optimizer='rmsprop',
                  metrics=['accuracy'])
    
    # Generate dummy training data
    x_train = np.random.random((1000, timesteps, data_dim))
    y_train = np.random.random((1000, num_classes))
    
    # Generate dummy validation data
    x_val = np.random.random((100, timesteps, data_dim))
    y_val = np.random.random((100, num_classes))
    
    model.fit(x_train, y_train,
              batch_size=64, epochs=5,
              validation_data=(x_val, y_val))

    Same stacked LSTM model, rendered “stateful”

    A stateful recurrent model is one for which the internal states (memories) obtained after processing a batch
    of samples are reused as initial states for the samples of the next batch. This allows to process longer sequences
    while keeping computational complexity manageable.

    You can read more about stateful RNNs in the FAQ.

    from keras.models import Sequential
    from keras.layers import LSTM, Dense
    import numpy as np
    
    data_dim = 16
    timesteps = 8
    num_classes = 10
    batch_size = 32
    
    # Expected input batch shape: (batch_size, timesteps, data_dim)
    # Note that we have to provide the full batch_input_shape since the network is stateful.
    # the sample of index i in batch k is the follow-up for the sample i in batch k-1.
    model = Sequential()
    model.add(LSTM(32, return_sequences=True, stateful=True,
                   batch_input_shape=(batch_size, timesteps, data_dim)))
    model.add(LSTM(32, return_sequences=True, stateful=True))
    model.add(LSTM(32, stateful=True))
    model.add(Dense(10, activation='softmax'))
    
    model.compile(loss='categorical_crossentropy',
                  optimizer='rmsprop',
                  metrics=['accuracy'])
    
    # Generate dummy training data
    x_train = np.random.random((batch_size * 10, timesteps, data_dim))
    y_train = np.random.random((batch_size * 10, num_classes))
    
    # Generate dummy validation data
    x_val = np.random.random((batch_size * 3, timesteps, data_dim))
    y_val = np.random.random((batch_size * 3, num_classes))
    
    model.fit(x_train, y_train,
              batch_size=batch_size, epochs=5, shuffle=False,
              validation_data=(x_val, y_val))
  • 相关阅读:
    07.28周四
    07.27 约束自己
    07.26
    07.25新的一周,踏实,努力
    07.21 智能充电开发
    07.20小笔记
    07.20 html5的适配flexible
    07.19 Linux命令 cd
    SpringBoot简介和Banner
    webpack生产环境配置
  • 原文地址:https://www.cnblogs.com/panchuangai/p/12568316.html
Copyright © 2011-2022 走看看