zoukankan      html  css  js  c++  java
  • UVA 10025 (13.08.06)

     The ? 1 ? 2 ? ... ? n = k problem 

    Theproblem

    Given the following formula, one can set operators '+' or '-' instead of each '?', in order to obtain a given k
    ? 1 ? 2 ? ... ? n = k

    For example: to obtain k = 12 , the expression to be used will be:
    - 1 + 2 + 3 + 4 + 5 + 6 - 7 = 12
    with n = 7

    TheInput

    The first line is the number of test cases, followed by a blank line.

    Each test case of the input contains integer k (0<=|k|<=1000000000).

    Each test case will be separated by a single line.

    The Output

    For each test case, your program should print the minimal possible n (1<=n) to obtain k with the above formula.

    Print a blank line between the outputs for two consecutive test cases.

    Sample Input

    2
    
    12
    
    -3646397
    

    Sample Output

    7
    
    2701
    


    题意不累赘~

    做法:

    假设sum1 = a1 + a2 + a3 + ... + an + x >= k

    而sum2 = a1 + a2 + a3 + ... + an - x = k

    那么sum1 - sum2 = 2x

    也就是说, 无论k的正负, 全把k当正数处理, 一直累加正数得到sum1 与 不按全当正数处理得到的sum2 相差的值是一个偶数(2x, 即负数的绝对值的两倍~)

    故, 全部从1累加到n吧, 直到 (sum >= k && (sum - k) % 2 == 0)


    AC代码:

    #include<stdio.h>
    
    int T;
    
    int main() {
        scanf("%d", &T);
        while(T--) {
            int k;
            int sum = 0;
            scanf("%d", &k);
            if(k < 0)
                k = (-1 * k);
            for(int i = 1; ;i++) {
                sum += i;
                if(sum >= k && (sum-k) % 2 == 0) {
                    printf("%d
    ", i);
                    break;
                }
            }
            if(T)
                printf("
    ");
        }
        return 0;
    }
  • 相关阅读:
    1.33 (累积互素数)
    1.33 (过滤累积和 求区间内所有素数之和)
    1.32 (更高层次的抽象! 乘法与加法本来就是一回事)
    1.31 (另一种求圆周率的算法)
    1.30 (递归的sum变迭代)
    习题1.29 (积分方法的优化---simpson规则)
    1.3.1 (对过程的抽象)
    SICP习题 1.23(素数查找的去偶数优化)
    SICP习题 1.22(素数)
    pom.xml
  • 原文地址:https://www.cnblogs.com/pangblog/p/3243957.html
Copyright © 2011-2022 走看看