zoukankan      html  css  js  c++  java
  • poj2195 Going Home


    题意:

    给定一个N*M的地图,地图上有若干个man和house,且man与house的数量一致。man每移动一格需花费$1(即单位费用=单位距离),一间house只能入住一个man。现在要求所有的man都入住house,求最小费用。


    分析:

    二分图的最大匹配

    我采用的是最小费用最大流算法,重点在建图。


    Code:

    #include <cmath>
    #include <cstdio>
    #include <cstring>
    #include <queue>
    #include <vector>
    #include <algorithm>
    using namespace std;
    
    const int maxn = 200 + 10;
    const int INF = 1000000000;
    typedef long long LL;
    int msum, hsum;
    struct xy {
        int x, y;
        xy(int x = 0, int y = 0): x(x), y(y) {}
    };
    xy M[maxn], H[maxn];
    
    struct Edge {
        int from, to, cap, flow, cost;
    };
    
    struct MCMF {
        int n, m, s, t;
        vector<Edge> edges;
        vector<int> G[maxn];
        int vis[maxn];
        int d[maxn];
        int p[maxn];
        int a[maxn];
    
        void init(int n) {
            this->n = n;
            for (int i = 0; i <= n; i++) G[i].clear();
            edges.clear();
        }
    
        void AddEdge(int from, int to, int cap, int cost) {
            edges.push_back((Edge) {from, to, cap, 0, cost});
            edges.push_back((Edge) {to, from, 0, 0, -cost});
            m = edges.size();
            G[from].push_back(m - 2);
            G[to].push_back(m - 1);
        }
    
        bool BellmanFord(int s, int t, int& cost) {
            for (int i = 0; i <= n; i++) d[i] = INF;
            memset(vis, 0, sizeof(vis));
            d[s] = 0; vis[s] = 1; p[s] = 0; a[s] = INF;
    
            queue<int> Q;
            Q.push(s);
            while (!Q.empty()) {
                int u = Q.front(); Q.pop();
                vis[u] = 0;
                for (int i = 0; i < G[u].size(); i++) {
                    Edge& e = edges[ G[u][i]];
                    if (e.cap > e.flow && d[e.to] > d[u] + e.cost) {
                        d[e.to] = d[u] + e.cost;
                        p[e.to] = G[u][i];
                        a[e.to] = min(a[u], e.cap - e.flow);
                        if (!vis[e.to]) { Q.push(e.to); vis[e.to] = 1;}
                    }
                }
            }
            if (d[t] == INF) return false;
            cost += d[t] * a[t];
            int u = t;
            while (u != s) {
                edges[p[u]].flow += a[t];
                edges[p[u] ^ 1].flow -= a[t];
                u = edges[p[u]].from;
            }
            return true;
        }
    
        int Mincost(int s, int t) {
            int cost = 0;
            while (BellmanFord(s, t, cost));
            return cost;
        }
    };
    
    MCMF g;
    int n, m, s, t;
    int dis(xy& a, xy& b) {
        return abs(a.x - b.x) + abs(a.y - b.y);
    }
    void make_graph() {
        int i, j, cost;
        char str[maxn];
        msum = hsum = 0;
        for (i = 0; i < n; i++) {
            scanf("%s", str);
            for (j = 0; j < m; j++)
                if (str[j] == 'm') {
                    M[msum++] = xy(i, j);
                } else if (str[j] == 'H') {
                    H[hsum++] = xy(i, j);
                }
        }
        s = msum + hsum + 1, t = msum + hsum + 2;
        g.init(t);
        for (i = 0; i < msum; i++)
            for (j = 0; j < hsum; j++) {
                cost = dis(M[i], H[j]);
                g.AddEdge(i, j + msum, 1, cost);
            }
    
        for (i = 0; i < msum; i++) g.AddEdge(s, i , 1, 0);
        for (i = 0; i < hsum; i++) g.AddEdge(i + msum, t, 1, 0);
    
    };
    int main() {
        while (scanf("%d%d", &n, &m)) {
            if (n == 0 && m == 0) break;
            make_graph();
            int answer = g.Mincost(s, t);
            printf("%d
    ", answer);
        }
        return 0;
    }


  • 相关阅读:
    nyoj891找点(贪心)
    spark streaming方法
    spark submit打印gc信息
    spark dataframe方法解释
    structed streaming基础---跳过的坑
    scala学习---2
    增量式编码器定时器配置和速度计算的处理方法
    三次样条插补的实现
    增量式编码器计数的过零点处理问题
    串口发送带有使能引脚的注意事项
  • 原文地址:https://www.cnblogs.com/pangblog/p/3262741.html
Copyright © 2011-2022 走看看