zoukankan      html  css  js  c++  java
  • ZOJ3551:Bloodsucker(概率DP)

    n 0th day, there are n-1 people and 1 bloodsucker. Every day, two and only two of them meet. Nothing will happen if they are of the same species, that is, a people meets a people or a bloodsucker meets a bloodsucker. Otherwise, people may be transformed into bloodsucker with probability p. Sooner or later(D days), all people will be turned into bloodsucker. Calculate the mathematical expectation of D.

    Input

    The number of test cases (T, T ≤ 100) is given in the first line of the input. Each case consists of an integer n and a float number p (1 ≤ n < 100000, 0 < p ≤ 1, accurate to 3 digits after decimal point), separated by spaces.

    Output

    For each case, you should output the expectation(3 digits after the decimal point) in a single line.

    Sample Input

    1
    2 1
    
    

    Sample Output

    1.000
     
    题意:一共有n个人,每天都会有一个人又一定的几率变成吸血鬼,求所有人变成吸血鬼的期望
    思路:概率DP,我们可以逆推,dp[i]代表i个人到所有人变成吸血鬼的概率,往上逆推

    则:dp[i]=(dp[i+1]+1)*p1+(dp[i]+1)*p2

    移项后化简得: p1*dp[i]=dp[i+1]*p1+1

    #include <stdio.h>
    #include <string.h>
    #include <algorithm>
    using namespace std;
    
    double dp[100005];
    
    int main()
    {
        int T,n,i;
        double p;
        scanf("%d",&T);
        while(T--)
        {
            scanf("%d%lf",&n,&p);
            dp[n] = 0;
            for(i = n-1; i>=1; i--)
            {
                double s1,s2,p1;
                s1 = (double)n*(n-1)/2;//从n个人中选两个人出来的选法,也就是C(n,2)
                s2 = (double)i*(n-i);//i为从i个人中选出一人的方法,n-i为从吸血鬼中选出一个吸血鬼的总数,共有这么多种
                p1 = s2/s1*p;//人与吸血鬼相遇的概率
                dp[i] = (dp[i+1]*p1+1)/p1;
            }
            printf("%.3f
    ",dp[1]);
        }
    
        return 0;
    }
    
  • 相关阅读:
    ROS和H3C,华为的端口汇聚方式
    wifi6 802.11ax技术标准 值得期待但无需等待!
    免信用卡更改Apple ID地区
    pip install失败报错解决方案
    黑产-起底身份倒卖产业:那些被公开叫卖的人生
    黄金
    jupyter nootbook本地使用指南
    current account(经常账户)
    outlier异常值检验原理和处理方法
    随机逻辑回归random logistic regression-特征筛选
  • 原文地址:https://www.cnblogs.com/pangblog/p/3268607.html
Copyright © 2011-2022 走看看