题意:三角形ABC的内切圆把它的三边分别划分成 m1:n1,m2:n2 和 m3:n3 的比例。另外已知内切圆的半径 r ,求三角形ABC 的面积。
#include<iostream> #include<iomanip> #include<algorithm> #include<cmath> #define sqr(a) (a)*(a) #define eps 1e-12 #define min(a,b) a<b?a:b #define max(a,b) a>b?a:b #define pi asin(1.0) using namespace std; int sig(double a) { return (a>eps)-(a<-eps); } int main() { int t; double r,m1,n1,m2,n2,m3,n3,k1,k2,k3; double left,right,mid,thy,th1,th2,th3; cin>>t; while(t--) { cin>>r>>m1>>n1>>m2>>n2>>m3>>n3; k1=sqr(n1); k2=sqr(n2/m2)*k1; k3=sqr(m1); left=min(sqrt(3/k1)*r,sqrt(3/k2)*r); left=min(left,sqrt(3/k3)*r); right=max(sqrt(3/k1)*r,sqrt(3/k2)*r); right=max(right,sqrt(3/k3)*r); mid=(left+right)/2; while(sig(right-left)>0) { th1=r/sqrt(k1*sqr(mid)+sqr(r)); th2=r/sqrt(k2*sqr(mid)+sqr(r)); th3=r/sqrt(k3*sqr(mid)+sqr(r)); thy=asin(th1)+asin(th2)+asin(th3); int f=sig(thy-pi); if(f==0) break; else if(f<0) right=mid; else left=mid; mid=(left+right)/2; } thy=2*asin(r/sqrt(k1*sqr(mid)+sqr(r))); double area=(n1+m1)*mid/2*(n2+m2)*n1/m2*mid*sin(thy); cout<<fixed<<setprecision(4)<<area<<endl; } return 0; }