zoukankan      html  css  js  c++  java
  • UVA 10341 Solve It 解方程 二分查找+精度

    题意:给出一个式子以及里面的常量,求出范围为[0,1]的解,精度要求为小数点后4为。

    二分暴力查找即可。

    e^(-n)可以用math.h里面的exp(-n)表示。

    代码:(uva该题我老是出现Submission Error,过几天再试看看)

     /*
     *   Author:        illuz <iilluzen@gmail.com>
     *   Blog:          http://blog.csdn.net/hcbbt
     *   File:          uva10241.cpp
     *   Lauguage:      C/C++
     *   Create Date:   2013-08-25 15:37:46
     *   Descripton:    UVA 10341 Solve It,  bisection
     */
    #include <cstdio>
    #include <cstdlib>
    #include <cstring>
    #include <cmath>
    #include <iostream>
    #include <list>
    #include <vector>
    #include <map>
    #include <set>
    #include <deque>
    #include <queue>
    #include <stack>
    #include <utility>
    #include <algorithm>
    using namespace std;
    #define rep(i, n) for (int i = 0; i < (n); i++)
    #define repu(i, a, b) for (int i = (a); i < (b); i++)
    #define repf(i, a, b) for (int i = (a); i <= (b); i++)
    #define repd(i, a, b) for (int i = (a); i >= (b); i--)
    #define swap(a, b) {int t = a; a = b; b = t;}
    #define mc(a) memset(a, 0, sizeof(a))
    #define ms(a, i) memset(a, i, sizeof(a))
    #define sqr(x) ((x) * (x))
    #define FI(i, x) for (typeof((x).begin()) i = (x).begin(); i != (x).end(); i++)
    typedef long long LL;
    typedef unsigned long long ULL;
    
    /****** TEMPLATE ENDS ******/
    
    double p, q, r, s, t, u;
    
    #define calc(x) (p*exp(-x)+q*sin(x)+r*cos(x)+s*tan(x)+t*x*x+u)
    
    int main() {
    	while (scanf("%lf%lf%lf%lf%lf%lf", &p, &q, &r, &s, &t, &u)) {
    		if (calc(0) < 0 || calc(1) > 0) printf("No solution
    ");
    		else {
    			double x1 = 0, x2 = 1;
    			while (abs(x1 - x2) >= 1e-10) {
    				double x = (x1 + x2) / 2.0;
    				if (calc(x) > 0) x1 = x;
    				else x2 = x;
    			}
    			printf("%.4lf
    ", x1);
    		}
    	}
    	return 0;
    }


  • 相关阅读:
    gulp备忘
    好文收藏
    妙味H5交互篇备忘
    [CSS3备忘] transform animation 等
    css选择器总结
    flexbox备忘
    函数
    继承2
    在 Swift 中实现单例方法
    浅谈 Swift 中的 Optionals
  • 原文地址:https://www.cnblogs.com/pangblog/p/3283386.html
Copyright © 2011-2022 走看看