Problem Description
Given n integers.
You have two operations:
U A B: replace the Ath number by B. (index counting from 0)
Q A B: output the length of the longest consecutive increasing subsequence (LCIS) in [a, b].
You have two operations:
U A B: replace the Ath number by B. (index counting from 0)
Q A B: output the length of the longest consecutive increasing subsequence (LCIS) in [a, b].
Input
T in the first line, indicating the case number.
Each case starts with two integers n , m(0<n,m<=10 5).
The next line has n integers(0<=val<=10 5).
The next m lines each has an operation:
U A B(0<=A,n , 0<=B=10 5)
OR
Q A B(0<=A<=B< n).
Each case starts with two integers n , m(0<n,m<=10 5).
The next line has n integers(0<=val<=10 5).
The next m lines each has an operation:
U A B(0<=A,n , 0<=B=10 5)
OR
Q A B(0<=A<=B< n).
Output
For each Q, output the answer.
Sample Input
1
10 10
7 7 3 3 5 9 9 8 1 8
Q 6 6
U 3 4
Q 0 1
Q 0 5
Q 4 7
Q 3 5
Q 0 2
Q 4 6
U 6 10
Q 0 9
Sample Output
1
1
4
2
3
1
2
5
题意:输入Q,则查寻范围[A,B]内的最长升序,输入U,则更新点A的值变成B。
解题:记录第个节点的最左端的升序长度,最右端的升序的长度和在这个范围内的最长升序。而父节点的则是由左右节点产生。
1. 左儿子最右边的值 < 右儿子最左边的值
lMax = (左儿子的lMax == 左儿子的len) ? 左儿子的len + 右儿子的lMax : 左儿子的lMax;
rMax = (右儿子的rMax == 右儿子的len) ? 右儿子的len + 左儿子的rMax : 右儿子的rMax;
Max = MAX(左儿子的rMax + 右儿子的lMax, 左儿子的Max, 右儿子的Max, lMax, rMax);
2. 左儿子最右边的值 >= 右儿子最左边的值
lMax = 左儿子的lMax;
rMax = 右儿子的rMax;
Max = MAX(左儿子的Max, 右儿子的Max);
注意:在查寻时,当跨越左右子树时则一这要注意这个,当 左节点的最右边的值< 右节点的最左边的值时,那么有可能最长升序在这时最大,并且不能超过这个范围。#include<stdio.h> #define N 500010 struct node { int Llcis,Rlcis,lcis;//最左连续升序长度,最右连续升序长度,这个范围的最长连续升序长度 }tree[8*N]; int num[N+5]; int max(int a,int b){ return a>b?a:b;} void chang_tree(int l,int r,int k)//根据第K个节点的左右节点,计算第K个节点的最左,最右和最长 的升序长度 { int m=(l+r)/2; node ltree=tree[k*2],rtree=tree[k*2+1]; if(num[m]>=num[m+1])//当左节点的最右边的值不小右节点的最左边的值时 { tree[k].Llcis=ltree.Llcis; tree[k].Rlcis=rtree.Rlcis; tree[k].lcis=max(ltree.lcis,rtree.lcis); } else { if(m-l+1==ltree.Llcis) tree[k].Llcis=ltree.Llcis+rtree.Llcis; else tree[k].Llcis=ltree.Llcis; if(r-m==rtree.Rlcis) tree[k].Rlcis=rtree.Rlcis+ltree.Rlcis; else tree[k].Rlcis=rtree.Rlcis; tree[k].lcis=max(ltree.lcis,ltree.Rlcis+rtree.Llcis); tree[k].lcis=max(tree[k].lcis,rtree.lcis); tree[k].lcis=max(tree[k].lcis,tree[k].Llcis); tree[k].lcis=max(tree[k].lcis,tree[k].Rlcis); } } void build(int l,int r,int k) { int m=(l+r)/2; if(l==r){ tree[k].Llcis=1; tree[k].lcis=1; tree[k].Rlcis=1; return ; } build(l,m,k*2); build(m+1,r,k*2+1); chang_tree(l,r,k); } void updata(int l,int r,int k,int Q,int ans) { int m=(l+r)/2; if(l==Q&&Q==r) {num[Q]=ans; return ;} if(Q<=m) updata(l,m,k*2,Q,ans); if(Q>m) updata(m+1,r,k*2+1,Q,ans); chang_tree(l,r,k); } int maxlen; void find(int l,int r,int k,int L,int R) { int m=(l+r)/2; if(L<=l&&r<=R){ maxlen=max(tree[k].lcis,maxlen); return ; } if(R<=m) find(l,m,k*2,L,R); else if(L>m) find(m+1,r,k*2+1,L,R); else{ find(l,m,k*2,L,R); find(m+1,r,k*2+1,L,R); //-----当查寻夸越左右子树时,左子树的最右端点的值小于右子树的最左端点的值------ if(num[m]<num[m+1]) if(L<=m-tree[2*k].Rlcis+1&&m+tree[k*2+1].Llcis<=R)//注意这个条件 maxlen=max(tree[k*2].Rlcis+tree[k*2+1].Llcis,maxlen); else if(L<=m-tree[2*k].Rlcis+1&&m+tree[k*2+1].Llcis>R)//注意这个条件 maxlen=max(tree[k*2].Rlcis+R-m,maxlen); else if(L>m-tree[2*k].Rlcis+1&&m+tree[k*2+1].Llcis<=R)//注意这个条件 maxlen=max(m-L+1+tree[k*2+1].Llcis,maxlen); else maxlen=R-L+1;//最长的升序长度 } } int main() { int t,n,m,QL,QR; char c[2]; scanf("%d",&t); while(t--) { scanf("%d%d",&n,&m); for(int i=1;i<=n;i++) scanf("%d",&num[i]); build(1,n,1); while(m--) { scanf("%s%d%d",c,&QL,&QR); if(c[0]=='U') updata(1,n,1,QL+1,QR); if(c[0]=='Q') { maxlen=0; find(1,n,1,QL+1,QR+1); printf("%d ",maxlen); } } } }