zoukankan      html  css  js  c++  java
  • ENC28J60学习笔记——第1部分

    1前言

    嵌入式以太网开发,可以分为两个部分,一个是以太网收发芯片的使用,一个是嵌入式以太网协议栈的实现。以太网收发芯片的使用要比串口收发芯片的使用复杂的多,市面上流通比较广泛的以太网收发芯片种类还不少,有SPI接口的ENC28J60,也有并口形式的RTL8019S,CS8900A等。嵌入式以太网协议栈有著名的uIP协议栈,Lwip协议栈,还有其他嵌入式高手开发的协议栈。无论是硬件还是软件,都无法分出高低,适合项目需求的才是最好的。

    1.1 写作理由

    再说明一下我写作的理由。以前从淘宝上购买过ENC28J60,店家信誓旦旦地说能提供51AVR LPC STM32等多个平台的代码,可以实现一个网页控制LED。头脑一热买了回来,买回来才发现,店家提供的资料零零散散,不易弄懂。几经周转,发现原来这些ENC28J60的代码都出自一个地方——AVRNET,源自老外的一个开源项目。把最原始的代码拿来细细品味,以太网协议就不那么神秘了。在这里说一下ENC28J60的使用,熟悉了ENC28J60的驱动可以分几步走。第一步,通过ENC28J60移植uIP或者lwIP协议栈,实现TCP或是UDP通信,第二,顺着AVRNET项目走,实现一个简单的web服务器,运行静态或者动态网页。嵌入式以太网和计算机以太网开发不同,对于TCP通信而言没有socket套接字,对于网页编程而言也没有IIS或PHP,所示实现起来会相对麻烦,但是也非常有乐趣。

    1.2 资料准备

           嵌入式以太网开发是非常复杂的工作,在开始之前最好先大致浏览ENC28J60的使用手册。除此之外,需要认真阅读TCP IP相关知识,推荐一本图书《嵌入式Internet TCP/IP基础、实现和应用》。嵌入式开发是一个反复借鉴的过程。该部分代码参考了AVRNET项目和奋斗开发板的相关范例。

    AVRNET项目网址链接:http://www.avrportal.com/?page=avrnet

    虽然AVRNET项目所使用的MCU为ATmega32,但是认真阅读源代码之后也可以方便的移植到其他的MCU平台,例如STM8、STM32和MSP430等。

    2 寄存器和寄存器操作

           ENC28J60的寄存器很多,操作这些寄存器需要一个良好的代码组织工作。在AVRNET项目中,把ENC28J60的驱动分解成ENC28J60.h文件和ENC28J60.c文件。H文件中主要描述ENC28J60寄存器的基本定义,而C文件主要实现了这些寄存器的操作。

    2.1 寄存器定义

    首先分析一下ENC28J60.h这个头文件。阅读数据手册之后,会发现ENC28J60寄存器数量较多,通过分析和整理,操作ENC28J60的寄存器需要注意以下3点。

    (1)   共有三种不同形式的寄存器——控制寄存器以太网寄存器PHY寄存器,不同的寄存器以不同的字母开头,以E、 MA和MI加以区分。操作这三种不同的寄存器需要不同的组合命令。

    (1)   寄存器被分布在4个不同的bank中,也就是说存在地址相同的寄存器,但是这些寄存器却位于不同的分区中,在操作寄存器之前必须选中正确的bank。

    (3)  虽然存在4个bank,但是有5个寄存器在4个bank的位置相同,它们是EIE、 EIR、ESTAT、ECON1、ECON2。

    AVRNET项目中,寄存器被定义成8位长度,而这8位长度包含了三个部分,地址bit7(最高位)用以区分PHY和MAC寄存器,PHY寄存器的操作最为特殊;地址bit6和bit5用以区分BANK,2位空间正好区分4个BANK;地址的最后5位才是寄存器的地址。通过这种方式就可以区分所有的寄存器了。列举了几行代码。由于头文件很长,所以不全部列出。

    // bank0 寄存器
    #define ERDPTL            (0x00|0x00)
    #define ERDPTH            (0x01|0x00)
    #define EWRPTL            (0x02|0x00)
    // bank1 寄存器
    #define EHT0              (0x00|0x20)
    #define EHT1              (0x01|0x20)
    #define EHT2              (0x02|0x20)
    // bank2 寄存器
    #define MACON1           (0x00|0x40|0x80)
    #define MACON2           (0x01|0x40|0x80)
    #define MACON3           (0x02|0x40|0x80)
    //bank3 寄存器
    #define MAADR1           (0x00|0x60|0x80)
    #define MAADR0           (0x01|0x60|0x80)
    #define MAADR3           (0x02|0x60|0x80)


           例如ERDPTH为位于BANK0的以太网寄存器,第一个数字0x01代表BANKx中的具体地址,该地址为0x01,第二个数字0x00代表BANK编号,该BANK地址为0

    EHT1为位于BANK1中的控制寄存器,第一个0x01代表BANKx中的具体地址,该地址为0x01,第二个0x20代表BANK编号,此处BANK编号为1。请注意由于BANK编号被保存在BIT6BIT5,所以此处为0x20而不是0x10

    MACON2为位于BANK2的以太网寄存器,第一个数字0x01代表在该BANKx中的寄存器地址,第二个数字0x40代表BANK编号,此处BANK编号为2,而第三个数字0x80代表该寄存器为以太网寄存器或是PHY寄存器,该寄存器的操作比较特殊。

           为了方便寄存器操作,头文件中还定义了寄存器地址操作的掩码,简单而言就是需要查看哪些位,不需要查看哪些位。

    /* 寄存器地址掩码 */
    #defineADDR_MASK        0x1F
    /* 存储区域掩码 */
    #defineBANK_MASK        0x60
    /* MAC和MII寄存器掩码*/
    #defineSPRD_MASK         0x80


           另外还有比较特殊的5个控制寄存器,EIE,EIR,ESTAT,ECON2和ECON1

    /* 关键寄存器 */
    #defineEIE                     0x1B
    #defineEIR                     0x1C
    #defineESTAT                   0x1D
    #defineECON2                  0x1E
    #defineECON1                  0x1F


    2.2 寄存器操作命令

           寄存器操作命令也可称为寄存器操作码。为了实现寄存器的操作,ENC28J60定义了6+1个寄存器操作命令(操作码)。操作相关寄存器至少有读寄存器命令,写寄存器命令;发送或接收以太网数据则必有写缓冲区命令或读缓冲区命令;为了加快操作,对于某些控制寄存器而言还可以有置位或者清零某位的命令;最后加上一个软件复位命令,锦上添花。

    /* 读控制寄存器 */
    #define ENC28J60_READ_CTRL_REG         0x00
    /* 读缓冲区 */
    #define ENC28J60_READ_BUF_MEM          0x3A
    /* 写控制寄存器 */
    #define ENC28J60_WRITE_CTRL_REG        0x40
    /* 写缓冲区 */
    #define ENC28J60_WRITE_BUF_MEM         0x7A
    /* 位域置位 */
    #define ENC28J60_BIT_FIELD_SET         0x80
    /* 位域清零 */
    #define ENC28J60_BIT_FIELD_CLR         0xA0
    /* 系统复位 */
    #define ENC28J60_SOFT_RESET            0xFF


    2.3 接收和发送缓冲区分配

           以太网数据的接收和发送离不开驱动芯片内部的RAM,也可称之为硬件缓冲区。ENC28J60包括8K 的硬件缓冲区,该硬件缓冲区一部分被接收缓冲区使用,另一部分为发送缓冲区使用。控制ENC28J60的最终目的为操作该硬件缓冲区。执行以太网发送命令时,向发送缓冲区中填充数据,并触发相关寄存器发送以太网数据;执行以太网接收命令时,通过查询相关寄存器或者外部中断的方式获得以太网数据输入事件,接着从接收缓冲区中读取相关数据。

    (1)   把缓冲区划分为两个部分。把8K的硬件缓冲区划分为两个部分至少需要四个参数,接收缓冲区需要一个起始地址和一个结束地址加以描述,发送缓冲区也需要一个起始地址和一个结束地址加以描述。最理想的方式,两个缓冲区完全占据了8K的硬件缓冲区,完美地利用这一空间。由于ENC28J60的寄存器长度为8位,而硬件缓冲区的大小为8K,所以前面提到的4个地址需要8个寄存器才可以完全描述,需要把单个地址分为高8位和低8位。在AVRNET项目中,接收缓冲区较大,而发送缓冲区较小。在以太网协议中,最大的报文长度为1518字节,而最小报文长度为60字节。发送缓冲区等于或略大于1518字节,剩余的部分全部分配给接收缓冲区。接收缓冲区较大也是考虑到AVR的处理能力有限,若某个时间点收到多个以太网报文,可以先把报文闲置与硬件缓冲区中,待MCU空闲时再从缓冲区中取出。

    /* 接收缓冲区起始地址 */
    #define RXSTART_INIT                0x00
    /* 接收缓冲区停止地址 */
    #define RXSTOP_INIT                 (0x1FFF - 0x0600 - 1)
    /* 发送缓冲区起始地址 发送缓冲区大小约1500字节*/
    #define TXSTART_INIT                (0x1FFF - 0x0600)
    /* 发送缓冲区停止地址 */
    #define TXSTOP_INIT                 0x1FFF


     

    图2.1 硬件缓冲区结构

    (2)   对于发送缓冲区而言,需要指定发送缓冲区写指针,使用写缓冲区命令操作该部分缓冲区,写指针的地址会不断增长,若遇到结束地址会重新返回起始地址。对于接收缓冲区而言就稍微复杂一点,每次读取之前必须明确该次操作时的读指针位置,根据前文的代码,缓冲区读指针的起始地址为0,在第一次读操作发生之后需要立即计算下次读操作的读指针地址。ENC28J60读缓冲区时,被读取的内容并不全是以太网负载,在以太网负载之前还有下一个数据包的地址指针(占两个字节),接收状态向量(占4个字节),之后才是“真实”以太网负载,该负载包括目标MAC地址,源MAC地址,数据包类型等等;最后为CRC校验字节。

     


    图2.2 接收数据包结构

  • 相关阅读:
    Mysql 常用小技巧
    【JS学习】require('fs')(fs模块用于对系统文件及目录进行读写操作。)
    【JS学习】js中forEach与for循环
    【JS学习】ES6之async和await
    【JS学习】关于Vue.use()详解
    【Npm学习】npm run dev 和 npm run serve
    【Jenkins学习】修改插件下载源地址
    【JS学习】js中const,var,let区别
    【Go学习】知识分享之Golang——go mod时使用代理模式goproxy和私有模式GOPRIVATE
    【JS学习】export 和 export default 的区别
  • 原文地址:https://www.cnblogs.com/pangblog/p/3402520.html
Copyright © 2011-2022 走看看