zoukankan      html  css  js  c++  java
  • Python3 源码阅读

    Python 内存管理分层架构

    /* An object allocator for Python.
    
       Here is an introduction to the layers of the Python memory architecture,
       showing where the object allocator is actually used (layer +2), It is
       called for every object allocation and deallocation (PyObject_New/Del),
       unless the object-specific allocators implement a proprietary allocation
       scheme (ex.: ints use a simple free list). This is also the place where
       the cyclic garbage collector operates selectively on container objects.
    
    
        Object-specific allocators
        _____   ______   ______       ________
       [ int ] [ dict ] [ list ] ... [ string ]       Python core         |
    +3 | <----- Object-specific memory -----> | <-- Non-object memory --> |
        _______________________________       |                           |
       [   Python's object allocator   ]      |                           |
    +2 | ####### Object memory ####### | <------ Internal buffers ------> |
        ______________________________________________________________    |
       [          Python's raw memory allocator (PyMem_ API)          ]   |
    +1 | <----- Python memory (under PyMem manager's control) ------> |   |
        __________________________________________________________________
       [    Underlying general-purpose allocator (ex: C library malloc)   ]
     0 | <------ Virtual memory allocated for the python process -------> |
    
       =========================================================================
        _______________________________________________________________________
       [                OS-specific Virtual Memory Manager (VMM)               ]
    -1 | <--- Kernel dynamic storage allocation & management (page-based) ---> |
        __________________________________   __________________________________
       [                                  ] [                                  ]
    -2 | <-- Physical memory: ROM/RAM --> | | <-- Secondary storage (swap) --> |
    
    */
    

    reference:Objects/obmalloc.c

    layer 3: Object-specific memory(int/dict/list/string....)
    		python 实现并维护
    		用户对Python对象的直接操作,主要是各类特定对象的缓冲池机制,缓冲池,比如小整数对象池等等
    layer 2: Python's object allocator
    		实现了创建/销毁python对象的接口(PyObject_New/Del),涉及对象参数/引用计数等
    
    layer 1: Python's raw memory allocator (PyMem_ API)
    		包装了第0层的内存管理接口,提供同一个raw memory管理接口
    		封装的原因:不同操作系统C行为不一致,保证可移植性,相同语义相同行为
    		
    layer 0: Underlying general-purpose allocator (ex: C library malloc)
    		操作系统提供的内存管理接口,由操作系统实现并管理,Python不能干涉这一层的行为,大内存 分配调用malloc函数分配内存
    

    Python 内存分配策略之-block,pool

    Python中有分为大内存和小内存,512K为分界线

    • 大内存使用系统malloc进行分配

    • 小内存使用python内存池进行分配

    1. 如果要分配的内存空间大于 SMALL_REQUEST_THRESHOLD bytes(512 bytes), 将直接使用layer 1的内存分配接口进行分配
    2. 否则, 使用不同的block来满足分配需求
    
    申请一块大小28字节的内存, 实际从内存中划到32字节的一个block (从size class index为3的pool里面划出)
    

    block

    内存块block 是python内存的最小单位

    * For small requests we have the following table:
     *
     * Request in bytes     Size of allocated block      Size class idx
     * ----------------------------------------------------------------
     *        1-8                     8                       0
     *        9-16                   16                       1
     *       17-24                   24                       2
     *       25-32                   32                       3
     *       33-40                   40                       4
     *       41-48                   48                       5
     *       49-56                   56                       6
     *       57-64                   64                       7
     *       65-72                   72                       8
     *        ...                   ...                     ...
     *      497-504                 504                      62
     *      505-512                 512                      63
     *
     *      0, SMALL_REQUEST_THRESHOLD + 1 and up: routed to the underlying
     *      allocator.
     */
    

    pool

    pool内存池,管理block, 一个pool管理着一堆固定大小的内存块,在Python中, 一个pool的大小通常为一个系统内存页. 4kB

    #define SYSTEM_PAGE_SIZE        (4 * 1024)
    #define SYSTEM_PAGE_SIZE_MASK   (SYSTEM_PAGE_SIZE - 1)
    
    #define POOL_SIZE               SYSTEM_PAGE_SIZE        /* must be 2^N */
    #define POOL_SIZE_MASK          SYSTEM_PAGE_SIZE_MASK
    

    pool的4kB内存 = pool_header + block集合(N多大小一样的block)

    typedef uint8_t block;
    
    /* Pool for small blocks. */
    struct pool_header {
        union { block *_padding;
                uint count; } ref;          /* number of allocated blocks    */
        block *freeblock;                   /* pool's free list head         */
        struct pool_header *nextpool;       /* next pool of this size class  */
        struct pool_header *prevpool;       /* previous pool       ""        */
        uint arenaindex;                    /* index into arenas of base adr */
        uint szidx;                         /* block size class index        */
        uint nextoffset;                    /* bytes to virgin block         */
        uint maxnextoffset;                 /* largest valid nextoffset      */
    };
    

    pool_header 作用

    与其他pool链接, 组成双向链表
    2. 维护pool中可用的block, 单链表
    3. 保存 szidx , 这个和该pool中block的大小有关系, (block size=8, szidx=0), (block size=16, szidx=1)...用于内存分配时匹配到拥有对应大小block的pool
    

    image.png

    pool 初始化

    void *
    PyObject_Malloc(size_t nbytes)
    {
      ...
    
              init_pool:
                // 1. 连接到 used_pools 双向链表, 作为表头
                // 注意, 这里 usedpools[0] 保存着 block size = 8 的所有used_pools的表头
                /* Frontlink to used pools. */
                next = usedpools[size + size]; /* == prev */
                pool->nextpool = next;
                pool->prevpool = next;
                next->nextpool = pool;
                next->prevpool = pool;
                pool->ref.count = 1;
    
                // 如果已经初始化过了...这里看初始化, 跳过
                if (pool->szidx == size) {
                    /* Luckily, this pool last contained blocks
                     * of the same size class, so its header
                     * and free list are already initialized.
                     */
                    bp = pool->freeblock;
                    pool->freeblock = *(block **)bp;
                    UNLOCK();
                    return (void *)bp;
                }
    
    
                /*
                 * Initialize the pool header, set up the free list to
                 * contain just the second block, and return the first
                 * block.
                 */
                // 开始初始化pool_header
                // 这里 size = (uint)(nbytes - 1) >> ALIGNMENT_SHIFT;  其实是Size class idx, 即szidx
                pool->szidx = size;
    
                // 计算获得每个block的size
                size = INDEX2SIZE(size);
    
                // 注意 #define POOL_OVERHEAD           ROUNDUP(sizeof(struct pool_header))
                // bp => 初始化为pool + pool_header size,  跳过pool_header的内存
                bp = (block *)pool + POOL_OVERHEAD;
    
                // 计算偏移量, 这里的偏移量是绝对值
                // #define POOL_SIZE               SYSTEM_PAGE_SIZE        /* must be 2^N */
                // POOL_SIZE = 4kb, POOL_OVERHEAD = pool_header size
                // 下一个偏移位置: pool_header size + 2 * size
                pool->nextoffset = POOL_OVERHEAD + (size << 1);
                // 4kb - size
                pool->maxnextoffset = POOL_SIZE - size;
    
                // freeblock指向 bp + size = pool_header size + size
                pool->freeblock = bp + size;
    
                // 赋值NULL
                *(block **)(pool->freeblock) = NULL;
                UNLOCK();
                return (void *)bp;
            }
    

    pool 进行block分配 - 总体代码

      if (pool != pool->nextpool) {   //
                /*
                 * There is a used pool for this size class.
                 * Pick up the head block of its free list.
                 */
                ++pool->ref.count;
                bp = pool->freeblock; // 指针指向空闲block起始位置
                assert(bp != NULL);
    
                // 代码-1
                // 调整 pool->freeblock (假设A节点)指向链表下一个, 即bp首字节指向的下一个节点(假设B节点) , 如果此时!= NULL
                // 表示 A节点可用, 直接返回
                if ((pool->freeblock = *(block **)bp) != NULL) {
                    UNLOCK();
                    return (void *)bp;
                }
    
                // 代码-2
                /*
                 * Reached the end of the free list, try to extend it.
                 */
                // 有足够的空间, 分配一个, pool->freeblock 指向后移
                if (pool->nextoffset <= pool->maxnextoffset) {
                    /* There is room for another block. */
                    // 变更位置信息
                    pool->freeblock = (block*)pool +
                                      pool->nextoffset;
                    pool->nextoffset += INDEX2SIZE(size);
    
    
                    *(block **)(pool->freeblock) = NULL; // 注意, 指向NULL
                    UNLOCK();
    
                    // 返回bp
                    return (void *)bp;
                }
    
                // 代码-3
                /* Pool is full, unlink from used pools. */  // 满了, 需要从下一个pool获取
                next = pool->nextpool;
                pool = pool->prevpool;
                next->prevpool = pool;
                pool->nextpool = next;
                UNLOCK();
                return (void *)bp;
            }
    

    pool进行block分配 -1

    内存块尚未分配完, 且此时不存在回收的block, 全新进来的时候, 分配第一块block

    (pool->freeblock = *(block **)bp) == NULL
    

    当进入代码逻辑2时,表示有空闲的block, 代码2的执行流程图如下

    image.png

    pool进行block分配 - 2 回收了某几个block

    回收涉及的代码:

    void
    PyObject_Free(void *p)
    {
        poolp pool;
        block *lastfree;
        poolp next, prev;
        uint size;
    
        pool = POOL_ADDR(p);
        if (Py_ADDRESS_IN_RANGE(p, pool)) {
            /* We allocated this address. */
            LOCK();
            /* Link p to the start of the pool's freeblock list.  Since
             * the pool had at least the p block outstanding, the pool
             * wasn't empty (so it's already in a usedpools[] list, or
             * was full and is in no list -- it's not in the freeblocks
             * list in any case).
             */
            assert(pool->ref.count > 0);            /* else it was empty */
            // p被释放, p的第一个字节值被设置为当前freeblock的值
            *(block **)p = lastfree = pool->freeblock;
            // freeblock被更新为指向p的首地址
            pool->freeblock = (block *)p;
    
            // 相当于往list中头插入了一个节点
    
         ...
        }
    }
    

    每释放一个block,该blcok就会变成pool->freeblock的头结点, 假设已经连续分配了5块, 第1块和第4块被释放,此时的内存图示如下:

    此时再一个block分配调用进来, 执行分配, 进入的逻辑是代码-1

    bp = pool->freeblock; // 指针指向空闲block起始位置
    // 代码-1
    // 调整 pool->freeblock (假设A节点)指向链表下一个, 即bp首字节指向的下一个节点(假设B节点) , 如果此时!= NULL
    // 表示 A节点可用, 直接返回
    if ((pool->freeblock = *(block **)bp) != NULL) {
        UNLOCK();
        return (void *)bp;
    }
    

    image.png

    pool进行block分配 - 3 pool用完了

    pool中内存空间都用完了, 进入代码-3

    /* Pool is full, unlink from used pools. */  // 满了, 需要从下一个pool获取
    next = pool->nextpool;
    pool = pool->prevpool;
    next->prevpool = pool;
    pool->nextpool = next;
    UNLOCK();
    return (void *)bp;
    

    Python 内存分配策略之-arena

    arena: 多个pool聚合的结果, 可放置64个pool

    #define ARENA_SIZE              (256 << 10)     /* 256KB */
    

    arena结构

    一个完整的arena = arena_object + pool集合

    /* Record keeping for arenas. */
    struct arena_object {
        /* The address of the arena, as returned by malloc.  Note that 0
         * will never be returned by a successful malloc, and is used
         * here to mark an arena_object that doesn't correspond to an
         * allocated arena.
         */
        uintptr_t address;
    
        /* Pool-aligned pointer to the next pool to be carved off. */
        block* pool_address;
    
        /* The number of available pools in the arena:  free pools + never-
         * allocated pools.
         */
        uint nfreepools;
    
        /* The total number of pools in the arena, whether or not available. */
        uint ntotalpools;
    
        /* Singly-linked list of available pools. */
        struct pool_header* freepools;
    
        /* Whenever this arena_object is not associated with an allocated
         * arena, the nextarena member is used to link all unassociated
         * arena_objects in the singly-linked `unused_arena_objects` list.
         * The prevarena member is unused in this case.
         *
         * When this arena_object is associated with an allocated arena
         * with at least one available pool, both members are used in the
         * doubly-linked `usable_arenas` list, which is maintained in
         * increasing order of `nfreepools` values.
         *
         * Else this arena_object is associated with an allocated arena
         * all of whose pools are in use.  `nextarena` and `prevarena`
         * are both meaningless in this case.
         */
        struct arena_object* nextarena;
        struct arena_object* prevarena;
    };
    
    arena_object的作用
    1. 与其他arena连接, 组成双向链表
    2. 维护arena中可用的pool, 单链表
    
    • pool_header和管理的blocks内存是一块连续的内存 => pool_header被申请时,其管理的的block集合的内存一并被申请 uint maxnextoffset; /* largest valid nextoffset */
    • arena_object 和其管理的内存是分离的 => arena_object被申请时,其管理的pool集合的内存没有被申请,而是在某一时刻建立关系的

    arena的两种状态

    /* The head of the singly-linked, NULL-terminated list of available
     * arena_objects.
     */
    // 单链表
    static struct arena_object* unused_arena_objects = NULL;
    
    /* The head of the doubly-linked, NULL-terminated at each end, list of
     * arena_objects associated with arenas that have pools available.
     */
    // 双向链表
    static struct arena_object* usable_arenas = NULL;
    

    arena 初始化

    * Allocate a new arena.  If we run out of memory, return NULL.  Else
     * allocate a new arena, and return the address of an arena_object
     * describing the new arena.  It's expected that the caller will set
     * `usable_arenas` to the return value.
     */
    static struct arena_object*
    new_arena(void)
    {
        struct arena_object* arenaobj;
        uint excess;        /* number of bytes above pool alignment */
        void *address;
        static int debug_stats = -1;
    
        if (debug_stats == -1) {
            const char *opt = Py_GETENV("PYTHONMALLOCSTATS");
            debug_stats = (opt != NULL && *opt != '');
        }
        if (debug_stats)
            _PyObject_DebugMallocStats(stderr);
    
        // 判断是否需要扩充"未使用"的arena_object列表
        if (unused_arena_objects == NULL) {
            uint i;
            uint numarenas;
            size_t nbytes;
    
            /* Double the number of arena objects on each allocation.
             * Note that it's possible for `numarenas` to overflow.
             */
            // 确定需要申请的个数, 首次初始化, 16, 之后每次翻倍
            numarenas = maxarenas ? maxarenas << 1 : INITIAL_ARENA_OBJECTS;
            if (numarenas <= maxarenas)
                return NULL;                /* overflow */
    #if SIZEOF_SIZE_T <= SIZEOF_INT
            if (numarenas > SIZE_MAX / sizeof(*arenas))
                return NULL;                /* overflow */
    #endif
            nbytes = numarenas * sizeof(*arenas);
            // 申请内存
            arenaobj = (struct arena_object *)PyMem_RawRealloc(arenas, nbytes);
            if (arenaobj == NULL)
                return NULL;
            arenas = arenaobj;
    
            /* We might need to fix pointers that were copied.  However,
             * new_arena only gets called when all the pages in the
             * previous arenas are full.  Thus, there are *no* pointers
             * into the old array. Thus, we don't have to worry about
             * invalid pointers.  Just to be sure, some asserts:
             */
            assert(usable_arenas == NULL);
            assert(unused_arena_objects == NULL);
    
            /* Put the new arenas on the unused_arena_objects list. */
            for (i = maxarenas; i < numarenas; ++i) {
                arenas[i].address = 0;              /* mark as unassociated */
                // 新申请的一律为0, 标识着这个arena处于"未使用"
                arenas[i].nextarena = i < numarenas - 1 ?
                                       &arenas[i+1] : NULL;
            }
    
             // 将其放入unused_arena_objects链表中
            // unused_arena_objects 为新分配内存空间的开头
            /* Update globals. */
            unused_arena_objects = &arenas[maxarenas];
            maxarenas = numarenas;
        }
    
        /* Take the next available arena object off the head of the list. */
        assert(unused_arena_objects != NULL);
        // 从unused_arena_objects中, 获取一个未使用的object
        arenaobj = unused_arena_objects;
        unused_arena_objects = arenaobj->nextarena;  // 更新链表
        assert(arenaobj->address == 0);
        // 申请内存, 256KB, 内存地址赋值给arena的address. 这块内存可用
        address = _PyObject_Arena.alloc(_PyObject_Arena.ctx, ARENA_SIZE);
        if (address == NULL) {
            /* The allocation failed: return NULL after putting the
             * arenaobj back.
             */
            arenaobj->nextarena = unused_arena_objects;
            unused_arena_objects = arenaobj;
            return NULL;
        }
        arenaobj->address = (uintptr_t)address;
    
        ++narenas_currently_allocated;
        ++ntimes_arena_allocated;
        if (narenas_currently_allocated > narenas_highwater)
            narenas_highwater = narenas_currently_allocated;
        arenaobj->freepools = NULL;
        /* pool_address <- first pool-aligned address in the arena
           nfreepools <- number of whole pools that fit after alignment */
        arenaobj->pool_address = (block*)arenaobj->address;
        arenaobj->nfreepools = MAX_POOLS_IN_ARENA;
        // 将pool的起始地址调整为系统页的边界
        // 申请到 256KB, 放弃了一些内存, 而将可使用的内存边界pool_address调整到了与系统页对齐
        excess = (uint)(arenaobj->address & POOL_SIZE_MASK);
        if (excess != 0) {
            --arenaobj->nfreepools;
            arenaobj->pool_address += POOL_SIZE - excess;
        }
        arenaobj->ntotalpools = arenaobj->nfreepools;
    
        return arenaobj;
    }
    

    image.png

    从arenas取一个arena进行初始化

    image.png

    arena分配

    new一个全新的arena

    static void*
    pymalloc_alloc(void *ctx, size_t nbytes)
     {
                // 刚开始没有可用的arena
                if (usable_arenas == NULL) {
                  // new一个, 作为双向链表的表头
                  usable_arenas = new_arena();
                  if (usable_arenas == NULL) {
                      UNLOCK();
                      goto redirect;
                  }
    
                  usable_arenas->nextarena =
                      usable_arenas->prevarena = NULL;
    
               }
    
              .......
    
              // 从arena中获取一个pool
              pool = (poolp)usable_arenas->pool_address;
              assert((block*)pool <= (block*)usable_arenas->address +
                                     ARENA_SIZE - POOL_SIZE);
              pool->arenaindex = usable_arenas - arenas;
              assert(&arenas[pool->arenaindex] == usable_arenas);
              pool->szidx = DUMMY_SIZE_IDX;
    
              // 更新 pool_address 向下一个节点
              usable_arenas->pool_address += POOL_SIZE;
              // 可用节点数量-1
              --usable_arenas->nfreepools;
    
    }
    

    从全新的arena中获取一个pool

    image.png

    假设arena是旧的, 怎么分配的pool, 跟pool分配block原理一样,使用单链表记录freepools

    pool = usable_arenas->freepools;
    if (pool != NULL) {
    

    当arena中一整块pool被释放的时候

    /* Free a memory block allocated by pymalloc_alloc().
       Return 1 if it was freed.
       Return 0 if the block was not allocated by pymalloc_alloc(). */
    static int
    pymalloc_free(void *ctx, void *p) {
        struct arena_object* ao;
        uint nf;  /* ao->nfreepools */
    
        /* Link the pool to freepools.  This is a singly-linked
                   * list, and pool->prevpool isn't used there.
                  */
        ao = &arenas[pool->arenaindex];
        pool->nextpool = ao->freepools;
        ao->freepools = pool;
        nf = ++ao->nfreepools;
    }
    

    在pool整块被释放的时候, 会将pool加入到arena->freepools作为单链表的表头, 然后, 在从非全新arena中分配pool时, 优先从arena->freepools里面取, 如果取不到, 再从arena内存块里面获取

    image.png

    注: 上图中nfreepools = n - 2

    当arena1用完了,获取arena1指向的下一个节点arena2

    static void*
    pymalloc_alloc(void *ctx, size_t nbytes)
    {
    
    
              // 当发现用完了最后一个pool!!!!!!!!!!!
              // nfreepools = 0
              if (usable_arenas->nfreepools == 0) {
                  assert(usable_arenas->nextarena == NULL ||
                         usable_arenas->nextarena->prevarena ==
                         usable_arenas);
                  /* Unlink the arena:  it is completely allocated. */
    
                  // 找到下一个节点!
                  usable_arenas = usable_arenas->nextarena;
                  // 右下一个
                  if (usable_arenas != NULL) {
                      usable_arenas->prevarena = NULL; // 更新下一个节点的prevarens
                      assert(usable_arenas->address != 0);
                  }
                  // 没有下一个, 此时 usable_arenas = NULL, 下次进行内存分配的时候, 就会从arenas数组中取一个
    
              }
    
      }
    

    注意: 这里有个逻辑, 就是每分配一个pool, 就检查是不是用到了最后一个, 如果是, 需要变更usable_arenas到下一个可用的节点, 如果没有可用的, 那么下次进行内存分配的时候, 会判定从arenas数组中取一个

    arena回收

    内存分配和回收最小单位是block, 当一个block被回收的时候, 可能触发pool被回收, pool被回收, 将会触发arena的回收机制

      1. arena中所有pool都是闲置的(empty), 将arena内存释放, 返回给操作系统
      1. 如果arena中之前所有的pool都是占用的(used), 现在释放了一个pool(empty), 需要将 arena加入到usable_arenas, 会加入链表表头
      1. 如果arena中empty的pool个数n, 则从useable_arenas开始寻找可以插入的位置. 将arena插入. (useable_arenas是一个有序链表, 按empty pool的个数, 保证empty pool数量越多, 被使用的几率越小, 最终被整体释放的机会越大)

    内存分配的步骤

    关注点:如何寻找到一块可用的nbytes的blcok内存?

    pool = usedpools[size + size]

    if pool:

    ​ pool 没满,取一个blcok返回

    ​ pool 满了,从下一个pool取一个blcok返回

    else:

    ​ 获取arena, 从里面初始化一个pool, 拿到第一个blcok返回

    进行内存分配和销毁, 所有操作都是在pool上进行的

    问题: pool中所有block的size一样, 但是在arena中, 每个pool的size都可能不一样, 那么最终这些pool是怎么维护的? 怎么根据大小找到需要的block所在的pool? => usedpools

    pool在内存池中的三种状态

    1. used状态:pool中至少有一个block已经被使用,并且至少有一个block未被使用,这种状态的pool受控于Python内部维护的usedpool数组
    2. full状态:pool中所有的block都已经被使用,这种状态的pool在arena中, 但不在arena的freepools链表中,处于full的pool各自独立, 不会被链表维护起来
    3. empty状态:pool中所有的blcok都未被使用,处于这个状态的pool的集合通过其pool_header中的nextpool构成一个链表,链表的表头示arena_object中的freepools

    image.png

    Python内部维护的usedpools数组是一个非常巧妙的实现,维护着所有的处于used状态的pool,当申请内存时,python就会通过usedpools寻找到一个可用的pool(处于used状态),从中分配一个block。因此我们想,一定有一个usedpools相关联的机制,完成从申请的内存的大小到size class index之间的转换,否则python就无法找到最合适的pool了。这种机制和usedpools的结构有着密切的关系,我们看一下它的结构

    usedpools

    usedpools数组: 维护着所有处于used状态的pool, 当申请内存的时候, 会通过usedpools寻找到一块可用的(处于used状态的)pool, 从中分配一个block。

    //obmalloc.c
    typedef uint8_t block;
    #define PTA(x)  ((poolp )((uint8_t *)&(usedpools[2*(x)]) - 2*sizeof(block *)))
    #define PT(x)   PTA(x), PTA(x)
    
    //在我当前的机器就是512/8=64个,对应的size class index就是从0到63
    #define NB_SMALL_SIZE_CLASSES   (SMALL_REQUEST_THRESHOLD / ALIGNMENT)
    
    static poolp usedpools[2 * ((NB_SMALL_SIZE_CLASSES + 7) / 8) * 8] = {
        PT(0), PT(1), PT(2), PT(3), PT(4), PT(5), PT(6), PT(7)
    #if NB_SMALL_SIZE_CLASSES > 8
        , PT(8), PT(9), PT(10), PT(11), PT(12), PT(13), PT(14), PT(15)
    #if NB_SMALL_SIZE_CLASSES > 16
        , PT(16), PT(17), PT(18), PT(19), PT(20), PT(21), PT(22), PT(23)
    #if NB_SMALL_SIZE_CLASSES > 24
        , PT(24), PT(25), PT(26), PT(27), PT(28), PT(29), PT(30), PT(31)
    #if NB_SMALL_SIZE_CLASSES > 32
        , PT(32), PT(33), PT(34), PT(35), PT(36), PT(37), PT(38), PT(39)
    #if NB_SMALL_SIZE_CLASSES > 40
        , PT(40), PT(41), PT(42), PT(43), PT(44), PT(45), PT(46), PT(47)
    #if NB_SMALL_SIZE_CLASSES > 48
        , PT(48), PT(49), PT(50), PT(51), PT(52), PT(53), PT(54), PT(55)
    #if NB_SMALL_SIZE_CLASSES > 56
        , PT(56), PT(57), PT(58), PT(59), PT(60), PT(61), PT(62), PT(63)
    #if NB_SMALL_SIZE_CLASSES > 64
    #error "NB_SMALL_SIZE_CLASSES should be less than 64"
    #endif /* NB_SMALL_SIZE_CLASSES > 64 */
    #endif /* NB_SMALL_SIZE_CLASSES > 56 */
    #endif /* NB_SMALL_SIZE_CLASSES > 48 */
    #endif /* NB_SMALL_SIZE_CLASSES > 40 */
    #endif /* NB_SMALL_SIZE_CLASSES > 32 */
    #endif /* NB_SMALL_SIZE_CLASSES > 24 */
    #endif /* NB_SMALL_SIZE_CLASSES > 16 */
    #endif /* NB_SMALL_SIZE_CLASSES >  8 */
    };
    
    

    image.png

    如果正在申请28字节, python首先会获取(size class index) size = (uint )(nbytes - 1) >> ALIGNMENT_SHIFT 显然这里size=3, 那么在usedpools中,寻找第3+3=6个元素,发现usedpools[6]的值是指向usedpools[4]的地址

    //obmalloc.c
    /* Pool for small blocks. */
    struct pool_header {
        union { block *_padding;
                uint count; } ref;          /* 当然pool里面的block数量    */
        block *freeblock;                   /* 一个链表,指向下一个可用的block   */
        struct pool_header *nextpool;       /* 指向下一个pool  */
        struct pool_header *prevpool;       /* 指向上一个pool       ""        */
        uint arenaindex;                    /* 在area里面的索引 */
        uint szidx;                         /* block的大小(固定值?后面说)     */
        uint nextoffset;                    /* 下一个可用block的内存偏移量         */
        uint maxnextoffset;                 /* 最后一个block距离开始位置的距离     */
    };
    
    

    显然是从usedpools[6](即usedpools+4)开始向后偏移8个字节(一个ref的大小加上一个freeblock的大小)后的内存,正好是usedpools[6]的地址(即usedpools+6),这是python内部的trick

    当我们要申请一个size class为32字节的pool,想要将其放入这个usedpools中时,要怎么做呢?从上面的描述我们知道,只需要进行usedpools[i+i] -> nextpool = pool即可,其中i为size class index,对应于32字节,这个i为3.当下次需要访问size class 为32字节(size class index为3)的pool时,只需要简单地访问usedpools[3+3]就可以得到了。python正是使用这个usedpools快速地从众多的pool中快速地寻找到一个最适合当前内存需求的pool,从中分配一块block。

    //obmalloc.c
    static int
    pymalloc_alloc(void *ctx, void **ptr_p, size_t nbytes)
    {
        block *bp;
        poolp pool;
        poolp next;
        uint size;
        ...
        LOCK();
        //获得size class index
        size = (uint)(nbytes - 1) >> ALIGNMENT_SHIFT;
        //直接通过usedpools[size+size],这里的size不就是我们上面说的i吗?
        pool = usedpools[size + size];
        //如果usedpools中有可用的pool
        if (pool != pool->nextpool) {
            ... //有可用pool
        }
        ... //无可用pool,尝试获取empty状态的pool
    }  
    

    内存池全局结构

    image.png

    参考:

    pyhton源码阅读-内存管理机制

    python源码解析第17章-python内存管理与垃圾回收

    后期查缺补漏需要看的文章

    Memory management by Zpoint
    Memory management in Python

  • 相关阅读:
    MySQL 数据库主从复制架构
    程序员的双十一
    MySQL 数据库事务与复制
    十字路口的程序员
    瞬息之间与时间之门
    HDFS 与 GFS 的设计差异
    HDFS 异常处理与恢复
    HDFS Client 设计实现解析
    HDFS DataNode 设计实现解析
    HDFS NameNode 设计实现解析
  • 原文地址:https://www.cnblogs.com/panlq/p/13056907.html
Copyright © 2011-2022 走看看