zoukankan      html  css  js  c++  java
  • kubernetes学习笔记之十二:资源指标API及自定义指标API

    第一章、前言

    以前是用heapster来收集资源指标才能看,现在heapster要废弃了
    从1
    .8以后引入了资源api指标监视 资源指标:metrics-server(核心指标) 自定义指标:prometheus,k8s-prometheus-adapter(将Prometheus采集的数据转换为指标格式)     k8s的中的prometheus需要k8s-prometheus-adapter转换一下才可以使用 新一代架构:     核心指标流水线:         kubelet,metrics-service以及API service提供api组成;cpu累计使用率,内存实时使用率,pod的资源占用率和容器磁盘占用率;     监控流水线:         用于从系统收集各种指标数据并提供终端用户,存储系统以及HPA,他们包括核心指标以及很多非核心指标,非核心指标本身不能被k8s解析

    第二章、安装部署metrics-server

    1、下载yaml文件,并安装

    项目地址:https://github.com/kubernetes/kubernetes/tree/master/cluster/addons/metrics-server,选择与版本对应的分支,我的是v1.10.0,所以这里我选择v1.10.0分支

    [root@k8s-master_01 manifests]# mkdir metrics-server
    [root@k8s-master_01 manifests]# cd metrics-server
    [root@k8s-master_01 metrics-server]# for file in auth-delegator.yaml auth-reader.yaml metrics-apiservice.yaml metrics-server-deployment.yaml metrics-server-service.yaml resource-reader.yaml;do wget https://raw.githubusercontent.com/kubernetes/kubernetes/v1.10.0/cluster/addons/metrics-server/$file;done   #记住,下载raw格式的文件
    [root@k8s-master_01 metrics-server]# grep image: ./*  #查看使用的镜像,如果可以科学上网,那么忽略,如果不可用那么需要提前下载,通过修改配置文件或修改镜像的名称的方式加载镜像,镜像可以到阿里云上去搜索
    ./metrics-server-deployment.yaml:        image: k8s.gcr.io/metrics-server-amd64:v0.2.1
    ./metrics-server-deployment.yaml:        image: k8s.gcr.io/addon-resizer:1.8.1
    [root@k8s-node_01 ~]# docker pull registry.cn-hangzhou.aliyuncs.com/criss/addon-resizer:1.8.1  #手动在所有的node节点上下载镜像,注意版本号没有v
    [root@k8s-node_01 ~]# docker pull registry.cn-hangzhou.aliyuncs.com/k8s-kernelsky/metrics-server-amd64:v0.2.1
    [root@k8s-master_01 metrics-server]# grep image: metrics-server-deployment.yaml
            image: registry.cn-hangzhou.aliyuncs.com/k8s-kernelsky/metrics-server-amd64:v0.2.1
            image: registry.cn-hangzhou.aliyuncs.com/criss/addon-resizer:1.8.1
    [root@k8s-master_01 metrics-server]# kubectl apply -f .
    [root@k8s-master_01 metrics-server]# kubectl get pod -n kube-system 

    2、验证

    [root@k8s-master01 ~]# kubectl api-versions |grep metrics
    metrics.k8s.io/v1beta1
    [root@k8s-node01 ~]# kubectl proxy --port=8080 #重新打开一个终端,启动代理功能 [root@k8s-master_01 metrics-server]# curl http://localhost:8080/apis/metrics.k8s.io/v1beta1 #查看这个资源组包含哪些组件 [root@k8s-master_01 metrics-server]# curl http://localhost:8080/apis/metrics.k8s.io/v1beta1/pods #可能需要等待一会在会有数据 [root@k8s-master_01 metrics-server]# curl http://localhost:8080/apis/metrics.k8s.io/v1beta1/nodes [root@k8s-node01 ~]# kubectl top node NAME CPU(cores) CPU% MEMORY(bytes) MEMORY% k8s-master01 176m 4% 3064Mi 39% k8s-node01 62m 1% 4178Mi 54% k8s-node02 65m 1% 2141Mi 27% [root@k8s-node01 ~]# kubectl top pods NAME CPU(cores) MEMORY(bytes) node-affinity-pod 0m 1Mi

    3.注意事项

    1.#在更新的版本中,如v1.11及以上会出现问题,这是因为metric-service默认从kubernetes的summary_api中获取数据,而summary_api默认使用10255端口来获
    取数据,但是10255是一个http协议的端口,可能官方认为http协议不安全所以封禁了10255端口改为使用10250端口,而10250是一个https协议端口,所以我们需要修改一下连接方式:
    由  - --source=kubernetes.summary_api:''
    修改为  - --source=kubernetes.summary_api:https://kubernetes.default?kubeletHttps=true&kubeletPort=10250&insecure-true  #表示虽然我使用https协议来通信,并且端口也是10250,但是如果证书不能认证依然可以通过非安全不加密的方式来通信
    [root@k8s-node01 deploy]# grep source=kubernetes  metrics-server-deployment.yaml 
    2.[root@k8s-node01 deploy]# grep nodes/stats  resource-reader.yaml #在新的版本中,授权文内没有 node/stats 的权限,需要手动去添加
    [root@k8s-node01 deploy]# cat resource-reader.yaml 
    apiVersion: rbac.authorization.k8s.io/v1
    kind: ClusterRole
    metadata:
      name: system:metrics-server
    rules:
    - apiGroups:
      - ""
      resources:
      - pods
      - nodes
      - nodes/stats  #添加这一行
      - namespaces
    3.在1.12.3版本中测试发现,需要进行如下修改才能成功部署(权限依然需要修改,其他版本暂未测试)
    [root@k8s-master-01 metrics-server]# vim metrics-server-deployment.yaml
    command:   #metrics-server命令参数修改为如下参数
      - /metrics-server
      - --metric-resolution=30s
      - --kubelet-port=10250
      - --kubelet-insecure-tls
      - --kubelet-preferred-address-types=InternalIP
    command:    #metrics-server-nanny 命令参数修改为如下参数
      - /pod_nanny
      - --config-dir=/etc/config
      - --cpu=40m
      - --extra-cpu=0.5m
      - --memory=40Mi
      - --extra-memory=4Mi
      - --threshold=5
      - --deployment=metrics-server-v0.3.1
      - --container=metrics-server
      - --poll-period=300000
      - --estimator=exponential

     第三章、安装部署prometheus

    项目地址:https://github.com/kubernetes/kubernetes/tree/master/cluster/addons/prometheus(由于prometheus只有v1.11.0及以上才有,所有我选择v1.11.0来部署)

    1.下载yaml文件及部署前操作

    [root@k8s-node01 ~]# cd /mnt/
    [root@k8s-node01 mnt]# git clone https://github.com/kubernetes/kubernetes.git  #我嫌麻烦就直接克隆kubernetes整个项目了
    [root@k8s-node01 mnt]# cd kubernetes/cluster/addons/prometheus/
    [root@k8s-node01 prometheus]# git checkout v1.11.0
    [root@k8s-node01 prometheus]# cd ..
    [root@k8s-node01 addons]# cp -r prometheus /root/manifests/
    [root@k8s-node01 manifests]# cd prometheus/
    [root@k8s-node01 prometheus]# grep -w  "namespace: kube-system" ./*   #默认prometheus使用的是kube-system名称空间,我们把它单独部署到一个名称空间中,方便之后的管理
    ./alertmanager-configmap.yaml:  namespace: kube-system
    ......
    [root@k8s-node01 prometheus]# sed  -i 's/namespace: kube-system/namespace: k8s-monitor/g' ./* 
    [root@k8s-node01 prometheus]# grep storage: ./*   #安装需要两个pv,等下我们需要创建一下
    ./alertmanager-pvc.yaml:      storage: "2Gi"
    ./prometheus-statefulset.yaml:          storage: "16Gi"
    [root@k8s-node01 prometheus]# cat pv.yaml #注意第二pv的storageClassName
    apiVersion: v1
    kind: PersistentVolume
    metadata:
      name: alertmanager  
    spec:
      capacity: 
        storage: 5Gi
      accessModes: 
        - ReadWriteOnce 
        - ReadWriteMany
      persistentVolumeReclaimPolicy: Recycle
      nfs:
        path: /data/volumes/v1
        server: 172.16.150.158
    ---
    apiVersion: v1
    kind: PersistentVolume
    metadata: 
      name: standard
    spec:
      capacity: 
        storage: 25Gi
      accessModes:
        - ReadWriteOnce
      persistentVolumeReclaimPolicy: Recycle
      storageClassName: standard   #storageClassName与prometheus-statefulset.yaml中volumeClaimTemplates下定义的需要保持一致
      nfs:
        path: /data/volumes/v2
        server: 172.16.150.158
    [root@k8s-node01 prometheus]# kubectl create namespace k8s-monitor [root@k8s-node01 prometheus]# mkdir node-exporter kube-state-metrics alertmanager prometheus #将每个组件单独放入一个目录中,方便部署及管理 [root@k8s-node01 prometheus]# mv node-exporter-* node-exporter [root@k8s-node01 prometheus]# mv alertmanager-* alertmanager [root@k8s-node01 prometheus]# mv kube-state-metrics-* kube-state-metrics [root@k8s-node01 prometheus]# mv prometheus-* prometheus

    2.安装node-exporter(用于收集节点的数据指标)

    [root@k8s-node01 prometheus]# grep -r image:  node-exporter/*
    node-exporter/node-exporter-ds.yml:          image: "prom/node-exporter:v0.15.2"   #非官方镜像,不能科学上网的也可以下载,所以不需要提前下载
    [root@k8s-node01 prometheus]# kubectl apply -f node-exporter/
    daemonset.extensions "node-exporter" created
    service "node-exporter" created
    [root@k8s-node01 prometheus]# kubectl get pod -n k8s-monitor 
    NAME                  READY     STATUS    RESTARTS   AGE
    node-exporter-l5zdw   1/1       Running   0          1m
    node-exporter-vwknx   1/1       Running   0          1m

    3.安装prometheus

    [root@k8s-master_01 prometheus]# kubectl apply -f pv.yaml 
    persistentvolume "alertmanager" configured
    persistentvolume "standard" created
    [root@k8s-master_01 prometheus]# kubectl get pv
    NAME              CAPACITY   ACCESS MODES   RECLAIM POLICY   STATUS      CLAIM     STORAGECLASS   REASON    AGE
    alertmanager      5Gi        RWO,RWX        Recycle          Available                                      9s
    
    standard          25Gi       RWO            Recycle          Available                                      9s
    [root@k8s-node01 prometheus]# grep -i image prometheus/*  #查看镜像是否需要下载
    [root@k8s-node01 prometheus]# vim prometheus-service.yaml   #默认prometheus的service端口类型为ClusterIP,为了可以集群外访问,修改为NodePort
    ...
    type: NodePort ports: - name: http port: 9090 protocol: TCP targetPort: 9090 nodePort: 30090 ... [root@k8s-node01 prometheus]# kubectl apply -f prometheus/ [root@k8s-node01 prometheus]# kubectl get pod -n k8s-monitor NAME READY STATUS RESTARTS AGE node-exporter-l5zdw 1/1 Running 0 24m node-exporter-vwknx 1/1 Running 0 24m prometheus-0 2/2 Running 0 1m [root@k8s-node01 prometheus]# kubectl get svc -n k8s-monitor NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE node-exporter ClusterIP None <none> 9100/TCP 25m prometheus NodePort 10.96.9.121 <none> 9090:30090/TCP 22m [root@k8s-master_01 prometheus]# kubectl get pv NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE alertmanager 5Gi RWO,RWX Recycle Available 1h standard 25Gi RWO Recycle Bound k8s-monitor/prometheus-data-prometheus-0 standard 1h

    访问prometheus(node节点IP:端口)

    4.部署metrics适配器(将prometheus数据转换为k8s可以识别的数据)

    [root@k8s-node01 kube-state-metrics]# grep image: ./*
    ./kube-state-metrics-deployment.yaml:        image: quay.io/coreos/kube-state-metrics:v1.3.0
    ./kube-state-metrics-deployment.yaml:        image: k8s.gcr.io/addon-resizer:1.7
    [root@k8s-node02 ~]#  docker pull registry.cn-hangzhou.aliyuncs.com/ccgg/addon-resizer:1.7
    [root@k8s-node01 kube-state-metrics]# vim kube-state-metrics-deployment.yaml   #修改镜像地址
    [root@k8s-node01 kube-state-metrics]# kubectl apply -f kube-state-metrics-deployment.yaml
    deployment.extensions "kube-state-metrics" configured
    [root@k8s-node01 kube-state-metrics]# kubectl get pod -n k8s-monitor 
    NAME                                  READY     STATUS    RESTARTS   AGE
    kube-state-metrics-54849b96b4-dmqtk   2/2       Running   0          23s
    node-exporter-l5zdw                   1/1       Running   0          2h
    node-exporter-vwknx                   1/1       Running   0          2h
    prometheus-0                          2/2       Running   0          1h

     5.部署k8s-prometheus-adapter(将数据输出为一个API服务)

    项目地址:https://github.com/DirectXMan12/k8s-prometheus-adapter

    [root@k8s-master01 ~]# cd /etc/kubernetes/pki/
    [root@k8s-master01 pki]#(umask 077; openssl genrsa -out serving.key 2048)
    [root@k8s-master01 pki]#openssl req -new -key serving.key -out serving.csr -subj "/CN=serving" #CN必须为serving
    [root@k8s-master01 pki]#openssl x509 -req -in serving.csr -CA ./ca.crt -CAkey ./ca.key  -CAcreateserial -out serving.crt -days 3650
    [root@k8s-master01 pki]# kubectl create secret generic cm-adapter-serving-certs --from-file=serving.crt=./serving.crt --from-file=serving.key=./serving.key -n k8s-monitor #证书名称必须为cm-adapter-serving-certs
    [root@k8s-master01 pki]#kubectl get secret  -n k8s-monitor
    [root@k8s-master01 pki]# cd
    [root@k8s-node01 ~]# git clone https://github.com/DirectXMan12/k8s-prometheus-adapter.git [root@k8s-node01 ~]# cd k8s-prometheus-adapter/deploy/manifests/ [root@k8s-node01 manifests]# grep namespace: ./* #处理role-binding之外的namespace的名称改为k8s-monitor [root@k8s-node01 manifests]# grep image: ./* #镜像不需要下载 [root@k8s-node01 ~]# sed -i 's/namespace: custom-metrics/namespace: k8s-monitor/g' ./* #rolebinding的不要替换 [root@k8s-node01 ~]# kubectl apply -f ./ [root@k8s-node01 ~]# kubectl get pod -n k8s-monitor [root@k8s-node01 ~]#kubectl get svc -n k8s-monitor kubectl api-versions |grep custom

     第四章、部署prometheus+grafana

    [root@k8s-master01 ~]# wget https://raw.githubusercontent.com/kubernetes-retired/heapster/master/deploy/kube-config/influxdb/grafana.yaml #找不到grafana的yaml文件,所以到heapster里面掏了一个下来用用
    [root@k8s-master01 ~]#egrep -i "influxdb|namespace|nodeport" grafana.yaml  #注释掉influxdb环境变量,修改namespace及port类型
    [root@k8s-master01 ~]#kubectl apply -f grafana.yaml
    [root@k8s-master01 ~]#kubectl get svc  -n k8s-monitor
    [root@k8s-master01 ~]#kubectl get pod -n k8s-monitor

    登录grafana,并修改数据源

    配置数据源

    点击右侧的Dashborads,可以导入grafana自带的prometheus的模板

    回到home下,下拉选择对应的模板查看数据

    例如:

    但是,grafana自带的模板和数据有些不匹配,我们可以去grafana官网去下载应用于k8s使用的模板,地址为:https://grafana.com/dashboards

    访问grafana官网搜索k8s相关模板,有时搜索框点击没有反应,可以直接在URL后面加上搜索内容即可

    我们选择kubernetes cluster(prometheus)作为测试

    点击需要下载的模板,并下载json文件

     下载完成后,导入文件

    选择上传文件

    导入后选择数据源

     导入后展示的界面

     第五章、实现HPA  

    1、使用v1版本测试

    [root@k8s-master01 alertmanager]# kubectl api-versions |grep autoscaling
    autoscaling/v1
    autoscaling/v2beta1
    [root@k8s-master01 manifests]# cat deploy-demon.yaml
    apiVersion: v1
    kind: Service
    metadata:
      name: myapp
      namespace: default
    spec:
      selector:
        app: myapp
      type: NodePort
      ports:
      - name: http
        port: 80
        targetPort: 80
        nodePort: 32222
    
    ---
    apiVersion: apps/v1
    kind: Deployment
    metadata: 
      name: myapp-deploy
    spec:
      replicas: 2
      selector: 
        matchLabels:
          app: myapp
      template:
        metadata:
          labels:
            app: myapp
        spec:
          containers:
          - name: myapp
            image: ikubernetes/myapp:v2
            ports:
            - name: httpd
              containerPort: 80
            resources:
              requests:
                memory: "64Mi"
                cpu: "100m"
              limits:
                memory: "128Mi"
                cpu: "200m"
    [root@k8s-master01 manifests]# kubectl get svc
    NAME         TYPE        CLUSTER-IP      EXTERNAL-IP   PORT(S)             AGE
    kubernetes   ClusterIP   10.96.0.1       <none>        443/TCP             47d
    my-nginx     NodePort    10.104.13.148   <none>        80:32008/TCP        19d
    myapp        NodePort    10.100.76.180   <none>        80:32222/TCP        16s
    tomcat       ClusterIP   10.106.222.72   <none>        8080/TCP,8009/TCP   19d
    [root@k8s-master01 manifests]# kubectl get pod
    NAME                            READY     STATUS    RESTARTS   AGE
    myapp-deploy-5db497dbfb-h7zcb   1/1       Running   0          16s
    myapp-deploy-5db497dbfb-tvsf5   1/1       Running   0          16s

    测试

    [root@k8s-master01 manifests]# kubectl autoscale deployment myapp-deploy --min=1 --max=8 --cpu-percent=60
    deployment.apps "myapp-deploy" autoscaled
    [root@k8s-master01 manifests]# kubectl get hpa
    NAME           REFERENCE                 TARGETS         MINPODS   MAXPODS   REPLICAS   AGE
    myapp-deploy   Deployment/myapp-deploy   <unknown>/60%   1         8         0          22s
    [root@k8s-master01 pod-dir]# yum install http-tools -y
    [root@k8s-master01 pod-dir]# ab -c 1000 -n 5000000 http://172.16.150.213:32222/index.html
    [root@k8s-master01 ~]# kubectl describe hpa 
    Name:                                                  myapp-deploy
    Namespace:                                             default
    Labels:                                                <none>
    Annotations:                                           <none>
    CreationTimestamp:                                     Sun, 16 Dec 2018 20:34:41 +0800
    Reference:                                             Deployment/myapp-deploy
    Metrics:                                               ( current / target )
      resource cpu on pods  (as a percentage of request):  178% (178m) / 60%
    Min replicas:                                          1
    Max replicas:                                          8
    Conditions:
      Type            Status  Reason            Message
      ----            ------  ------            -------
      AbleToScale     False   BackoffBoth       the time since the previous scale is still within both the downscale and upscale forbidden windows
      ScalingActive   True    ValidMetricFound  the HPA was able to successfully calculate a replica count from cpu resource utilization (percentage of request)
      ScalingLimited  True    ScaleUpLimit      the desired replica count is increasing faster than the maximum scale rate
    Events:
      Type    Reason             Age   From                       Message
      ----    ------             ----  ----                       -------
      Normal  SuccessfulRescale  19m   horizontal-pod-autoscaler  New size: 1; reason: All metrics below target
      Normal  SuccessfulRescale  2m    horizontal-pod-autoscaler  New size: 2; reason: cpu resource utilization (percentage of request) above target
    [root@k8s-master01 ~]# kubectl get pod
    NAME                            READY     STATUS    RESTARTS   AGE
    myapp-deploy-5db497dbfb-6kssf   1/1       Running   0          2m
    myapp-deploy-5db497dbfb-h7zcb   1/1       Running   0          24m
    [root@k8s-master01 ~]# kubectl get hpa
    NAME           REFERENCE                 TARGETS    MINPODS   MAXPODS   REPLICAS   AGE
    myapp-deploy   Deployment/myapp-deploy   178%/60%   1         8         2          20m

    2、使用v2beat1

    [root@k8s-master01 pod-dir]# cat hpa-demo.yaml 
    apiVersion: autoscaling/v2beta1
    kind: HorizontalPodAutoscaler
    metadata:
      name: myapp-hpa-v2
    spec:
      scaleTargetRef:
        apiVersion: apps/v1
        kind: Deployment
        name: myapp-deploy
      minReplicas: 1
      maxReplicas: 10
      metrics:
      - type: Resource
        resource:
          name: cpu
          targetAverageUtilization: 55
      - type: Resource
        resource:
          name: memory
          targetAverageValue: 100Mi
    [root@k8s-master01 pod-dir]# kubectl delete hpa myapp-deploy 
    horizontalpodautoscaler.autoscaling "myapp-deploy" deleted
    [root@k8s-master01 pod-dir]# kubectl apply -f hpa-demo.yaml 
    horizontalpodautoscaler.autoscaling "myapp-hpa-v2" created
    [root@k8s-master01 pod-dir]# kubectl get hpa
    NAME           REFERENCE                 TARGETS                          MINPODS   MAXPODS   REPLICAS   AGE
    myapp-hpa-v2   Deployment/myapp-deploy   <unknown>/100Mi, <unknown>/55%   1         10        0          6s

    测试

    [root@k8s-master01 ~]# kubectl describe hpa 
    Name:                                                  myapp-hpa-v2
    Namespace:                                             default
    Labels:                                                <none>
    Annotations:                                           kubectl.kubernetes.io/last-applied-configuration={"apiVersion":"autoscaling/v2beta1","kind":"HorizontalPodAutoscaler","metadata":{"annotations":{},"name":"myapp-hpa-v2","namespace":"default"},"spec":{...
    CreationTimestamp:                                     Sun, 16 Dec 2018 21:07:25 +0800
    Reference:                                             Deployment/myapp-deploy
    Metrics:                                               ( current / target )
      resource memory on pods:                             1765376 / 100Mi
      resource cpu on pods  (as a percentage of request):  200% (200m) / 55%
    Min replicas:                                          1
    Max replicas:                                          10
    Conditions:
      Type            Status  Reason              Message
      ----            ------  ------              -------
      AbleToScale     True    SucceededRescale    the HPA controller was able to update the target scale to 4
      ScalingActive   True    ValidMetricFound    the HPA was able to successfully calculate a replica count from cpu resource utilization (percentage of request)
      ScalingLimited  False   DesiredWithinRange  the desired count is within the acceptable range
    Events:
      Type    Reason             Age   From                       Message
      ----    ------             ----  ----                       -------
      Normal  SuccessfulRescale  18s   horizontal-pod-autoscaler  New size: 4; reason: cpu resource utilization (percentage of request) above target
    [root@k8s-master01 ~]# kubectl get pod
    NAME                            READY     STATUS    RESTARTS   AGE
    myapp-deploy-5db497dbfb-5n885   1/1       Running   0          26s
    myapp-deploy-5db497dbfb-h7zcb   1/1       Running   0          40m
    myapp-deploy-5db497dbfb-z2tqd   1/1       Running   0          26s
    myapp-deploy-5db497dbfb-zkjhw   1/1       Running   0          26s
    [root@k8s-master01 ~]# kubectl describe hpa 
    Name:                                                  myapp-hpa-v2
    Namespace:                                             default
    Labels:                                                <none>
    Annotations:                                           kubectl.kubernetes.io/last-applied-configuration={"apiVersion":"autoscaling/v2beta1","kind":"HorizontalPodAutoscaler","metadata":{"annotations":{},"name":"myapp-hpa-v2","namespace":"default"},"spec":{...
    CreationTimestamp:                                     Sun, 16 Dec 2018 21:07:25 +0800
    Reference:                                             Deployment/myapp-deploy
    Metrics:                                               ( current / target )
      resource memory on pods:                             1765376 / 100Mi
      resource cpu on pods  (as a percentage of request):  0% (0) / 55%
    Min replicas:                                          1
    Max replicas:                                          10
    Conditions:
      Type            Status  Reason              Message
      ----            ------  ------              -------
      AbleToScale     False   BackoffBoth         the time since the previous scale is still within both the downscale and upscale forbidden windows
      ScalingActive   True    ValidMetricFound    the HPA was able to successfully calculate a replica count from memory resource
      ScalingLimited  False   DesiredWithinRange  the desired count is within the acceptable range
    Events:
      Type    Reason             Age   From                       Message
      ----    ------             ----  ----                       -------
      Normal  SuccessfulRescale  6m    horizontal-pod-autoscaler  New size: 4; reason: cpu resource utilization (percentage of request) above target
      Normal  SuccessfulRescale  34s   horizontal-pod-autoscaler  New size: 1; reason: All metrics below target
    [root@k8s-master01 ~]# kubectl get pod
    NAME                            READY     STATUS    RESTARTS   AGE
    myapp-deploy-5db497dbfb-h7zcb   1/1       Running   0          46m

    3.使用v2beat1测试自定义选项

    [root@k8s-master01 pod-dir]# cat  ../deploy-demon-metrics.yaml
    apiVersion: v1
    kind: Service
    metadata:
      name: myapp
      namespace: default
    spec:
      selector:
        app: myapp
      type: NodePort
      ports:
      - name: http
        port: 80
        targetPort: 80
        nodePort: 32222
    
    ---
    apiVersion: apps/v1
    kind: Deployment
    metadata: 
      name: myapp-deploy
    spec:
      replicas: 2
      selector: 
        matchLabels:
          app: myapp
      template:
        metadata:
          labels:
            app: myapp
        spec:
          containers:
          - name: myapp
            image: ikubernetes/metrics-app  #测试镜像
            ports:
            - name: httpd
              containerPort: 80
    [root@k8s-master01 pod-dir]# kubectl apply -f deploy-demon-metrics.yaml
    [root@k8s-master01 pod-dir]# cat hpa-custom.yaml 
    apiVersion: autoscaling/v2beta1
    kind: HorizontalPodAutoscaler
    metadata:
      name: myapp-hpa-v2
    spec:
      scaleTargetRef:
        apiVersion: apps/v1
        kind: Deployment
        name: myapp-deploy
      minReplicas: 1
      maxReplicas: 10
      metrics:
      - type: Pods   #注意类型
        pods:
          metricName: http_requests #容器中自定义的参数
          targetAverageValue: 800m  #m表示个数,即800个并发数
    [root@k8s-master01 pod-dir]# kubectl apply -f hpa-custom.yaml 
    [root@k8s-master01 pod-dir]# kubectl describe hpa myapp-hpa-v2 
    Name:                       myapp-hpa-v2
    Namespace:                  default
    Labels:                     <none>
    Annotations:                kubectl.kubernetes.io/last-applied-configuration={"apiVersion":"autoscaling/v2beta1","ks":{},"name":"myapp-hpa-v2","namespace":"default"},"spec":{...
    CreationTimestamp:          Sun, 16 Dec 2018 22:09:32 +0800
    Reference:                  Deployment/myapp-deploy
    Metrics:                    ( current / target )
      "http_requests" on pods:  <unknown> / 800m
    Min replicas:               1
    Max replicas:               10
    Events:                     <none>
    [root@k8s-master01 pod-dir]# kubectl get hpa
    NAME           REFERENCE                 TARGETS          MINPODS   MAXPODS   REPLICAS   AGE
    myapp-hpa-v2   Deployment/myapp-deploy   <unknown>/800m   1         10        2          5m

    测试:

    #好像镜像有点问题,待解决

     

  • 相关阅读:
    《算法》第二章部分程序 part 3
    《算法》第二章部分程序 part 2
    《算法》第二章部分程序 part 1
    《算法》第一章部分程序 part 2
    《算法》第一章部分程序 part 1
    Java,Hello World,《算法》环境搭建中的问题,用 cmd 和 IntelliJ Idea 分别编译和运行 Java 程序
    《汇编语言 基于x86处理器》第十一章 MS-DOS 编程部分的代码 part 1
    《汇编语言 基于x86处理器》第十三章高级语言接口部分的代码 part 2
    《汇编语言 基于x86处理器》第十三章高级语言接口部分的代码 part 1
    《汇编语言》(王爽)补充笔记,第 14 ~ 17 章
  • 原文地址:https://www.cnblogs.com/panwenbin-logs/p/10123833.html
Copyright © 2011-2022 走看看