zoukankan      html  css  js  c++  java
  • 一个筛子(例一 LOJ 6053)

    一个筛子(例一 LOJ 6053)

    #include <iostream>
    #include <cstdio>
    #include <cstdlib>
    #include <cmath>
    #include <climits>
    #include <cstring>
    #include <vector>
    #include <map>
    #include <queue>
    #include <iterator>
    #include <utility>
    #include <algorithm>
    #include <bits/stdc++.h>
    using namespace std;
    typedef long long ll;
    typedef unsigned long long ull;
    typedef long double ld;
    typedef pair<int, int> pii;
    #define mp make_pair
    #define fi first
    #define se second
    #define All(x) (x).begin(), (x).end()
    #define Y1 "YES"
    #define N1 "NO"
    #define ENDL '
    '
    #define count2(x) __builtin_popcount(x)
    #define countleadingzero(x) __builtin_clz(x)
    inline ll read() {  // not solve LLONG_MIN LMAX=9,223,372,036,854,775,807
        ll s = 0, w = 1;
        char ch = getchar();
        while (ch < '0' || ch > '9') {
            if (ch == '-')
                w = -1;
            ch = getchar();
        }
        while (ch >= '0' && ch <= '9') s = s * 10 + ch - '0', ch = getchar();
        return s * w;
    }
    struct ygsz{
    	typedef __int128_t returnT;
    	typedef long long argT;
    	typedef unsigned int sqargT;
    	static constexpr argT maxm=1e5+10;
    	sqargT primelist[maxm],pcnt=0;
    	bool isnprime[maxm];
    	double inv[maxm];
    	static constexpr argT mod = 1e9+7;
    	inline argT fpowll(argT a,argT b,argT p){//a^b mod p;
    		assert(p!=0);
    		argT ans=1%p,base=a%p;
    		for(;b>0;b/=2){
    			if(b&1)ans=(returnT)ans*base%p;
    			base=(returnT)base*base%p;
    		}
    		return ans;
    	}
    	const argT inv2=fpowll(2,mod-2,mod);
    	inline void init(){
    	    constexpr argT m=maxm-1;
    	//    constexpr argT mz=m/log10(m);
    	    primelist[++pcnt]=2;
    	    for(argT i = 1;i <= m; ++i)
    	        inv[i] = 1.0 / i;
    	    // i*i may overflow
    	    for(argT j = 4; j <=m; j+=2)
    	    isnprime[j] = true;
    	    for (argT i = 3; i <= m; i+=2){
    	        if(!isnprime[i]){
    	            primelist[++pcnt]=i;
    	            // i*i may overflow
    	            for(argT j = i * i; j <=m; j+=i)
    	            isnprime[j] = true;
    	        }
    	    }
    	    return ;
    	}
    	argT a[maxm];
    	returnT b[maxm];//质数前缀和
    	argT s1[maxm],s2[maxm];//质数个数前缀和 
    	inline argT f(const argT x){
    		return x;
    	}
    	//int ppt=0;
    	inline argT n34divlognsieve(const argT n) {
    	    if (n <= 1) return 0;
    	    const sqargT m = sqrt(n);
    	    constexpr double eps = 1e-7;
    	    for (sqargT i = 2; i <= m; ++i)    
    	        a[i] = (a[i - 1] + i)%mod,s1[i] = i - 1;
    	    for (sqargT i = 1; i <= m; ++i) {  
    	        returnT sum_n = n / i;
    	        b[i] = ((sum_n + sum_n * sum_n) *inv2 - 1)%mod;
    	        s2[i] = sum_n - 1;
    	    }
    	    const sqargT pt=upper_bound(primelist+1,primelist+1+pcnt,m)-primelist;
    	    for (sqargT r=1;r<pt;++r) {
    	        const sqargT prime=primelist[r];
    	        const argT t = a[prime - 1];
    	        const argT s = s1[prime - 1];
    	        const double invprime=inv[prime];
    	        const sqargT limmp = m * invprime + eps;
    	        for (sqargT i = 1; i <= limmp; ++i){
    	        	b[i] =(b[i]- (b[i * prime] - t) * prime)%mod; 
    	        	s2[i] =(s2[i] - (s2[i *prime] - s))%mod;
    				s2[i] =(s2[i] + mod)%mod;
    			}
    	            
    	        const sqargT limnpp = n / prime / prime;
    	        const argT limnp = n / prime;
    	        const sqargT lim2=min(limnpp,m);
    	        double *ptr=&inv[limmp + 1];
    	        for (sqargT i = limmp + 1; i <= lim2 ; ++i,++ptr) {
    	        	b[i] =(b[i]- (a[(unsigned int)(limnp * (*ptr)  + eps)] - t) * prime)%mod;
    	        	s2[i] =(s2[i]- (s1[(unsigned int)(limnp * (*ptr)  + eps)] - s) )%mod;
    	        	s2[i] =(s2[i]+mod)%mod;
    			}
    	            
    	        const argT limpp = prime * prime;
    	        for (argT i = m; i >= limpp; --i){
    	        	a[i] =(a[i]- (a[(unsigned int)(i * invprime + eps)] - t) * prime)%mod;
    	        	s1[i] =(s1[i] - (s1[(unsigned int)(i * invprime + eps)] - s))%mod;
    	        	s1[i] =(s1[i]+mod)%mod;
    			}
    	    }
    	    for (argT i = 1; i <= m; ++i){
    	    	a[i]=(a[i]-s1[i]+(i>=2)*2+mod)%mod;
    	    	b[i]=(b[i]-s2[i]+(n/i>=2)*2+mod)%mod;
    		}
    	    return b[1];
    	}
    	argT n;
    	returnT work(argT pos,argT res,argT rem){
    		argT t = (rem <= sqrt(n)? a[rem]: b[n/rem]);
    		returnT ans = (res * (t -a[primelist[pos-1]])%mod)%mod;
    		for(argT i = pos; i <= pcnt; ++i){
    			if(primelist[i]*primelist[i]>rem)return ans;
    			for(argT t=primelist[i],js=1;t<=rem;t*=primelist[i],++js){
    				if(t*primelist[i]<rem)ans+=work(i+1,res*(primelist[i]^js)%mod,rem/t);
    				if(js>=2)ans=(ans+res*(primelist[i]^js)%mod )%mod;
    			}
    		}
    		return ans;
    	}	
    }P;
    
    int main() {
        P.init();
        ll n=read();
        P.n=n;
       	P.n34divlognsieve(n);
        cout<<(int)P.work(1,1,n)+1;
        return 0;
    }
    
  • 相关阅读:
    【BZOJ】2100: [Usaco2010 Dec]Apple Delivery(spfa+优化)
    【BZOJ】2101: [Usaco2010 Dec]Treasure Chest 藏宝箱(dp)
    【BZOJ】3404: [Usaco2009 Open]Cow Digit Game又见数字游戏(博弈论)
    【BZOJ】3403: [Usaco2009 Open]Cow Line 直线上的牛(模拟)
    【BZOJ】3402: [Usaco2009 Open]Hide and Seek 捉迷藏(spfa)
    【BZOJ】3400: [Usaco2009 Mar]Cow Frisbee Team 奶牛沙盘队(dp)
    【BZOJ】3399: [Usaco2009 Mar]Sand Castle城堡(贪心)
    【BZOJ】3392: [Usaco2005 Feb]Part Acquisition 交易(spfa)
    【BZOJ】2020: [Usaco2010 Jan]Buying Feed, II (dp)
    【BZOJ】2015: [Usaco2010 Feb]Chocolate Giving(spfa)
  • 原文地址:https://www.cnblogs.com/passguan/p/13721498.html
Copyright © 2011-2022 走看看