zoukankan      html  css  js  c++  java
  • SAS PROC MCMC example in R: Logistic Regression Random-Effects Model(转)

    In this post I will run SAS example Logistic Regression Random-Effects Model in four R based solutions; Jags, STAN, MCMCpack and LaplacesDemon. To quote the SAS manual: 'The data are taken from Crowder (1978). The Seeds data set is a 2 x 2 factorial layout, with two types of seeds, O. aegyptiaca 75 and O. aegyptiaca 73, and two root extracts, bean and cucumber. You observe r, which is the number of germinated seeds, and n, which is the total number of seeds. The independent variables are seed and extract.'
    The point of this exercise is to demonstrate a random effect. Each observation has a random effect associated with it. In contrast the other parameters have non-informative priors. As such, the models are not complex.  
    Previous post in the series PROC MCMC examples programmed in R were: example 1: samplingexample 2: Box Cox transformation,example 5: Poisson regression and example 6: Non-Linear Poisson Regression.

    JAGS

    To make things easy on myself I wondered if this data was already present as R data. That is when I discovered this post at Grimwisdom doing exactly what I wanted as JAGS program. Hence that code was the basis for this JAGS code.
    One thing on the models and distributions. JAGS uses tau (1/variance) as hyperparameter for the delta parameters and tau has gamma distribution. In contrast, all other programs use standard deviation as hyperparameter for delta parameter and hence gets the inverse gamma distribution. This distribution is available in the MCMCpack package and also in STAN. Gelman has a publication on this kind of priors: Prior distributions for variance parameters in hierarchical models

    library(R2jags)
    data(orob2,package='aod')
    seedData <- list ( N  = 21,
        r  = orob2$y,
        n  = orob2$n,
        x1 = c(1,0)[orob2$seed],
        x2 = c(0,1)[orob2$root]
    )
    
    modelRandomEffect <- function() {
      for(i in 1:4) {alpha[i] ~ dnorm(0.0,1.0E-6)}
      for(i in 1:N) {delta[i] ~ dnorm(0.0,tau)}
      
      for (i in 1:N) {
        logit(p[i]) <- alpha[1] + 
            alpha[2]*x1[i] + 
            alpha[3]*x2[i] +
            alpha[4]*x1[i]*x2[i] + 
            delta[i];
        r[i] ~ dbin(p[i],n[i]);
      }
      tau ~ dgamma(.01,0.01)
      s2 <- 1/tau
    }
    params <- c('alpha','s2')
    myj <-jags(model=modelRandomEffect,
        data = seedData,
        parameters=params)
    myj

    Inference for Bugs model at "/tmp/RtmpKURJBm/model70173774d0c.txt", fit using jags,
     3 chains, each with 2000 iterations (first 1000 discarded)
     n.sims = 3000 iterations saved
             mu.vect sd.vect   2.5%    25%     50%     75%   97.5%  Rhat n.eff
    alpha[1]  -0.538   0.191 -0.907 -0.664  -0.542  -0.419  -0.135 1.005   440
    alpha[2]   0.078   0.300 -0.550 -0.111   0.083   0.269   0.646 1.005   440
    alpha[3]   1.342   0.284  0.768  1.164   1.340   1.524   1.895 1.004  1400
    alpha[4]  -0.807   0.441 -1.663 -1.098  -0.817  -0.521   0.046 1.009   300
    s2         0.105   0.096  0.010  0.041   0.077   0.138   0.366 1.051    47
    deviance 101.236   6.653 89.853 96.595 100.903 105.313 114.371 1.022    95

    For each parameter, n.eff is a crude measure of effective sample size,
    and Rhat is the potential scale reduction factor (at convergence, Rhat=1).

    DIC info (using the rule, pD = var(deviance)/2)
    pD = 21.7 and DIC = 122.9
    DIC is an estimate of expected predictive error (lower deviance is better).

    MCMCpack

    MCMCpack had some difficulty with this particular prior for s2. In the end I chose inverse Gamma(0.1,0.1) that worked. Therefor parameters estimates turn out slightly different. For conciseness only the first parameters are displayed in the output.

    library(MCMCpack)
    xmat <- cbind(rep(1,21),seedData$x1,seedData$x2,seedData$x1*seedData$x2)
    MCMCfun <- function(parm) {
        beta=parm[1:4]
        s2=parm[5]
        delta=parm[5+(1:21)]
        if(s2<0 ) return(-Inf)
        step1 <-  xmat %*% beta + delta
        p <- LaplacesDemon::invlogit(step1)
        LL <- sum(dbinom(seedData$r,seedData$n,p,log=TRUE))
        prior <- sum(dnorm(beta,0,1e3,log=TRUE))+
                sum(dnorm(delta,0,sqrt(s2),log=TRUE))+
                log(dinvgamma(s2,.1,.1))
        LP=LL+prior
        return(LP)
    }
    inits <- c(rnorm(4,0,1),runif(1,0,1),rnorm(21,0,1))
    names(inits) <- c(paste('beta',0:3,sep=''),
            's2',
            paste('delta',1:21,sep=''))
    mcmcout <- MCMCmetrop1R(MCMCfun,
            inits)
    summary(mcmcout)

    Iterations = 501:20500
    Thinning interval = 1 
    Number of chains = 1 
    Sample size per chain = 20000 

    1. Empirical mean and standard deviation for each variable,
       plus standard error of the mean:

              Mean      SD  Naive SE Time-series SE
     [1,] -0.59046 0.30456 0.0021535        0.03613
     [2,]  0.01476 0.47526 0.0033606        0.04866
     [3,]  1.48129 0.38227 0.0027031        0.03883
     [4,] -0.93754 0.66414 0.0046962        0.07025
     [5,]  0.35146 0.08004 0.0005659        0.05020 

    STAN

    Stan had no problems at all with this model.

    library(rstan) 
    smodel <- '
    data {
        int <lower=1> N;
        int n[N];
      int r[N];
        real x1[N];
      real x2[N];
    }
    parameters {
        real Beta[4];
        real <lower=0> s2;
      real Delta[N];
    }
    transformed parameters {
        vector[N] mu;
        for (i in 1:N) {
          mu[i] <- inv_logit(
            Beta[1] + Beta[2]*x1[i] + 
            Beta[3]*x2[i]+Beta[4]*x1[i]*x2[i]+
            Delta[i]);
        }
    }
    model {
            r ~ binomial(n,mu);
            s2 ~ inv_gamma(.01,.01);
            Delta ~ normal(0,sqrt(s2));
        Beta ~ normal(0,1000);
    }
    ' 
    fstan <- stan(model_code = smodel, 
            data = seedData, 
            pars=c('Beta','s2'))
    fstan

    Inference for Stan model: smodel.
    4 chains, each with iter=2000; warmup=1000; thin=1; 
    post-warmup draws per chain=1000, total post-warmup draws=4000.

               mean se_mean   sd    2.5%     25%     50%     75%   97.5% n_eff Rhat
    Beta[1]   -0.56    0.01 0.20   -0.97   -0.68   -0.55   -0.43   -0.14  1370 1.00
    Beta[2]    0.08    0.01 0.33   -0.58   -0.12    0.08    0.29    0.72  1385 1.00
    Beta[3]    1.36    0.01 0.29    0.83    1.18    1.36    1.54    1.97  1355 1.00
    Beta[4]   -0.83    0.01 0.46   -1.76   -1.12   -0.82   -0.53    0.04  1434 1.00
    s2         0.12    0.00 0.11    0.02    0.06    0.10    0.16    0.42   588 1.01
    lp__    -523.70    0.34 6.86 -537.26 -528.19 -523.73 -519.21 -509.87   403 1.01

    Samples were drawn using NUTS(diag_e) at Sat Jan 17 18:27:38 2015.
    For each parameter, n_eff is a crude measure of effective sample size,
    and Rhat is the potential scale reduction factor on split chains (at 
    convergence, Rhat=1).

    LaplacesDemon

    While in the MCMCpack code I borrowed from LaplacesDemon the invlogit() function, in LaplacesDemon I borrow the InvGamma distribution. I guess it evens out. For a change no further tweaking in the code. Note that the core likelihood function is the same as MCMCpack. However, LaplacesDemon is able to use the correct prior. For brevity again part of the output has not been copied in the blog.

    library('LaplacesDemon')
    mon.names <- "LP"
    parm.names <- c(paste('beta',0:3,sep=''),
            's2',
            paste('delta',1:21,sep=''))
    PGF <- function(Data) {
        x <-c(rnorm(21+4+1,0,1))
        x[5] <- runif(1,0,2)
        x
    }
    MyData <- list(mon.names=mon.names, 
            parm.names=parm.names,
            PGF=PGF,
            xmat = xmat,
            r=seedData$r,
        n=seedData$n)
    N<-1
    Model <- function(parm, Data)
    {
        beta=parm[1:4]
        s2=parm[5]
        delta=parm[5+(1:21)]
    #    if(s2<0 ) return(-Inf)
         step1 <-  xmat %*% beta + delta
        p <- invlogit(step1)
        LL <- sum(dbinom(seedData$r,seedData$n,p,log=TRUE))
        tau <- 1/s2
        prior <- sum(dnorm(beta,0,1e3,log=TRUE))+
                sum(dnorm(delta,0,sqrt(s2),log=TRUE))+
                log(dinvgamma(s2,.01,.01))
        LP=LL+prior
        Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP,
                yhat=p,
                parm=parm)
        return(Modelout)
    }
    Initial.Values <- GIV(Model, MyData, PGF=TRUE)
    Fit1 <- LaplacesDemon(Model, 
            Data=MyData, 
            Initial.Values = Initial.Values
    )
    Fit1

    Call:
    LaplacesDemon(Model = Model, Data = MyData, Initial.Values = Initial.Values)

    Acceptance Rate: 0.67594
    Algorithm: Metropolis-within-Gibbs
    Covariance Matrix: (NOT SHOWN HERE; diagonal shown instead)
       beta0    beta1    beta2    beta3       s2   delta1   delta2   delta3 
    0.218082 0.218082 0.218082 0.218082 0.218082 0.218082 0.218082 0.218082 
      delta4   delta5   delta6   delta7   delta8   delta9  delta10  delta11 
    0.218082 0.218082 0.218082 0.218082 0.218082 0.218082 0.218082 0.218082 
     delta12  delta13  delta14  delta15  delta16  delta17  delta18  delta19 
    0.218082 0.218082 0.218082 0.218082 0.218082 0.218082 0.218082 0.218082 
     delta20  delta21 
    0.218082 0.218082 

    Covariance (Diagonal) History: (NOT SHOWN HERE)
    Deviance Information Criterion (DIC):
             All Stationary
    Dbar 100.063    100.063
    pD    26.630     26.630
    DIC  126.692    126.692
    Initial Values:
     [1]  1.385256609 -0.634946833  1.456635236 -0.041162276  1.883504417
     [6] -1.380783003 -0.688367493  0.210060822  0.127231904  0.710367572
    [11] -0.865780359 -1.649760777 -0.005532662 -0.114739142  0.642440639
    [16] -0.919494616 -0.829018195 -0.938486769  0.302152995 -1.877933490
    [21]  1.170542660  0.131282852  0.210852443  0.808779058 -2.115209547
    [26]  0.431205368

    Iterations: 10000
    Log(Marginal Likelihood): -27.92817
    Minutes of run-time: 0.81
    Model: (NOT SHOWN HERE)
    Monitor: (NOT SHOWN HERE)
    Parameters (Number of): 26
    Posterior1: (NOT SHOWN HERE)
    Posterior2: (NOT SHOWN HERE)
    Recommended Burn-In of Thinned Samples: 0
    Recommended Burn-In of Un-thinned Samples: 0
    Recommended Thinning: 240
    Specs: (NOT SHOWN HERE)
    Status is displayed every 100 iterations
    Summary1: (SHOWN BELOW)
    Summary2: (SHOWN BELOW)
    Thinned Samples: 1000
    Thinning: 10


    Summary of All Samples
                      Mean        SD       MCSE       ESS            LB
    beta0     -0.544001376 0.2305040 0.03535316  93.03421   -0.95266664
    beta1      0.060270601 0.3458235 0.04387534 106.92244   -0.67629607
    beta2      1.360903746 0.3086684 0.04838620  60.40225    0.76275725
    beta3     -0.828532715 0.4864563 0.06323965  99.93646   -1.74744708
    s2         0.134846805 0.1055559 0.01599649  68.64912    0.02549966
    (...)
    Summary of Stationary Samples
                      Mean        SD       MCSE       ESS            LB
    beta0     -0.544001376 0.2305040 0.03535316  93.03421   -0.95266664
    beta1      0.060270601 0.3458235 0.04387534 106.92244   -0.67629607
    beta2      1.360903746 0.3086684 0.04838620  60.40225    0.76275725
    beta3     -0.828532715 0.4864563 0.06323965  99.93646   -1.74744708
    s2         0.134846805 0.1055559 0.01599649  68.64912    0.02549966

    ---------------------------------------------------------------------------------- 数据和特征决定了效果上限,模型和算法决定了逼近这个上限的程度 ----------------------------------------------------------------------------------
  • 相关阅读:
    c# winfrom 查看网络图片
    C# winfrom 读取txt文本内容
    c# winfrom 下载网页源代码
    c# winfrom 下载网络资源
    c# 换行符
    内存映射问题
    APUE 书中 toll 函数
    [P3387] 【模板】缩点
    [P5960] 【模板】差分约束算法
    [CF1442C] Graph Transpositions
  • 原文地址:https://www.cnblogs.com/payton/p/4233014.html
Copyright © 2011-2022 走看看