zoukankan      html  css  js  c++  java
  • 博弈之取石子游戏小总结

    一)巴什博弈(Bash Game):只有一堆n个物品,两个人轮流从这堆物品中取物,规定每次至少取一个,最多取m个。最后取光者得胜。

    很容易想到当n%(m+1)<>0时,先取必胜,第一次先拿走n%(m+1),以后每个回合到保持两人拿走的物品总和为m+1即可。

    这个游戏还可以有一种变相的玩法:两个人轮流报数,每次至少报一个,最多报十个,谁能报到100者胜。

    (二)威佐夫博弈(Wythoff Game):有两堆各若干个物品,两个人轮流从某一堆或同时从两堆中取同样多的物品,规定每次至少取一个,多者不限,最后取光者得胜。

    如果甲面对(0,0),那么甲已经输了,这种局势我们称为奇异局势。前几个奇异局势是:(0,0)、(1,2)、(3,5)、(4,7)、(6,10).可以看出,a0=b0=0,ak是未在前面出现过的最小自然数,而 bk=ak+k.

        那么任给一个局势(a,b),怎样判断它是不是奇异局势呢?我们有如下公式:

        ak =[k(1+√5)/2],bk= ak + k  (k=0,1,2,...,n 方括号表示取整函数)

    奇妙的是其中出现了黄金分割数(1+√5)/2 = 1。618...,因此,由ak,bk组成的矩形近似为黄金矩形,由于2/(1+√5)=(√5-1)/2,可以先求出j=[a(√5-1)/2],若a=[j(1+√5)/2],那么a = aj,bj = aj + j,若不等于,那么a = aj+1,bj+1 = aj+1+ j + 1,若都不是,那么就不是奇异局势。然后再按照上述法则进行,一定会遇到奇异局势。

    (三)尼姆博弈(Nimm Game):有三堆各若干个物品,两个人轮流从某一堆取任意多的物品,规定每次至少取一个,多者不限,最后取光者得胜。

    对于任何奇异局势(a,b,c),都有a^b^c=0.

    非奇异局势(a,b,c)(a<b<c)转换为奇异局势,只需将c变为a^b,即从c中减去 c-(a^b)即可。

    (四) Nim游戏  : 有三堆各若干个物品,两个人轮流从某一堆取任意多的物品,规定每次至少取一个,多者不限,最后取光者得胜

    对于任何奇异局势,都有a[0]^a[1]^a[2]......^a[n-1]=0.

  • 相关阅读:
    K短路 (A*算法) [Usaco2008 Mar]牛跑步&[Sdoi2010]魔法猪学院
    [Noi2015]软件包管理器 BZOJ4196
    [SDOI2011]染色 BZOJ2243 树链剖分+线段树
    序列操作 BZOJ2962 线段树
    斜率优化入门学习+总结 Apio2011特别行动队&Apio2014序列分割&HZOI2008玩具装箱&ZJOI2007仓库建设&小P的牧场&防御准备&Sdoi2016征途
    BZOJ1854: [Scoi2010]游戏 二分图
    BZOJ3613: [Heoi2014]南园满地堆轻絮
    BZOJ4590: [Shoi2015]自动刷题机
    [JSOI2008]星球大战starwar BZOJ1015
    Rmq Problem/mex BZOJ3339 BZOJ3585
  • 原文地址:https://www.cnblogs.com/pblr/p/5698653.html
Copyright © 2011-2022 走看看