zoukankan      html  css  js  c++  java
  • PCB 机器学习(ML.NET)初体验实现PCB加投率预测

       使用ML.NET建立PCB加投率模型对单一蚀刻工序进行加投率预测, 此实例为最简单预测,要想实现全流程加投率预测挑战难度还是挺大的,可以查看另一种关于大数据在PCB行业应用---加投率计算基本原理:PCB 加投率计算实现基本原理--K最近邻算法(KNN)

      一.PCB加投数据结构

            建立数据结构,蚀刻工序影响报废的的关键参数,铜厚、线宽公差、最小线宽、最小线距(实际影响参数会更多)

        /// <summary>
        /// PCB加投模型样本数据结构(此为演示结构并非真实加投模型结构)--蚀刻工序
    /// 大数据量样本数越多预测结果数据越准确(选用的大数据数据分类算法)
    /// </summary> public class PCB_Scrap_Data { /// <summary> /// PCB铜厚 /// </summary> [Column("0")] public float CuThickness; /// <summary> /// 蚀刻线宽公差 /// </summary> [Column("1")] public float Tolerance; /// <summary> /// 最小线宽 /// </summary> [Column("2")] public float Width; /// <summary> /// 最小线距 /// </summary> [Column("3")] public float Space; /// <summary> /// 加投率数值 /// </summary> [Column("4")] [ColumnName("Label")] public float Label; } /// <summary> /// 此为预测PCB加投率结果类 /// </summary> public class ScrapPrediction { /// <summary> /// 预测加投率值 /// </summary> [ColumnName("PredictedLabel")] public float PredictedLabels; }
      二.准备数据---蚀刻工序数据

           准备PCB蚀刻工序历史实际报废率数据与对应的影响蚀刻报废的参数因子(测试数据只用了12条,数据量是远远不够的,仅仅用于测试用,要实际要预测的话于少准备1年以前的生产数据,数据量的多少决定预测的准确率高低),此数据是参数对此蚀刻工序的影响报废权重值,并非真实的值, 为了简化:报废多少量就是因该要加投多少量。

           如下数据:每行数据带表信息: 【表面铜厚】,【铜厚】,【最小线宽】,【最小线距】,【报废率】 

    69,3,14,14,0.03
    44,35,10,10,0.03
    64,11,13,13,0.03
    39,0,31,31,0.03
    4,2,47,47,0.02
    2,1,48,48,0.02
    2,3,48,48,0.02
    12,8,40,40,0.02
    11,75,7,7,0.01
    14,61,13,13,0.01
    18,75,4,4,0.01
    11,45,22,22,0.01
      三.训练PCB加投率模型(加载数据,转换数据,学习算法,训练模型)
                //创建管道并加载数据
                var pipeline = new LearningPipeline();
                string dataPath = ".\Data\pcb.data";
                pipeline.Add(new TextLoader<PCB_Scrap_Data>(dataPath, separator: ","));
                //转换数据
                pipeline.Add(new Dictionarizer("Label"));
                //将所有功能放入矢量
                pipeline.Add(new ColumnConcatenator("Features", "CuThickness", "Tolerance", "Width", "Space"));
                //添加学习算法(SDCA算法--即:随机双坐标上升)
                pipeline.Add(new StochasticDualCoordinateAscentClassifier());
                //将标签转Label换回原始文本
                pipeline.Add(new PredictedLabelColumnOriginalValueConverter() { PredictedLabelColumn = "PredictedLabel" });
                //根据数据集--训练模型
                var model = pipeline.Train<PCB_Scrap_Data, ScrapPrediction>();
                //训练模型好的PCB加投率模型保存起来
                model.WriteAsync("PCB_Scrap_Model.zip");
    // 用PCB加投率(参数因子)套入训练好模型来预测PCB加投率-----测试调用 var prediction = model.Predict(new PCB_Scrap_Data() { CuThickness = 18, Tolerance = 75, Width = 4, Space = 4, }); Console.WriteLine($"PCB加投率预测值为: {prediction.PredictedLabels}");
      四.读取PCB加投率模型并调用

             将PCB加投率模型封装WebAPI接口,供外部调用

            // POST api/ScrapPrediction
            /// <summary>
            /// PCB加投率预测---通过训练好模型来预测PCB加投率 
            /// </summary>
            /// <param name="value"></param>
            /// <returns></returns>
            [HttpPost]
            public async Task<double> Post([FromBody] PCB_Scrap_Data value)
            {
                var model = await PredictionModel.ReadAsync<PCB_Scrap_Data, ScrapPrediction>("PCB_Scrap_Model.zip");
                var prediction = model.Predict(value);
                return prediction.PredictedLabels;
            }
      五.PCB加投率预测调用实例

     

  • 相关阅读:
    顺序表应用4-2:元素位置互换之逆置算法(数据改进)(SDUT 3663)
    顺序表应用3:元素位置互换之移位算法(SDUT 3326)
    Java——容器(Collection)
    Java——容器(Interator)
    Java——JDK1.5新增强的for循环
    Java——容器(Set)
    Java——容器(List)
    Java——类
    Java——面向对象编程
    Java——递归调用
  • 原文地址:https://www.cnblogs.com/pcbren/p/10295469.html
Copyright © 2011-2022 走看看