UnionFind就是acm中常用的并查集...
相关问题:
547. Friend Circles
纯裸题噢...
1 class Solution { 2 public: 3 int root[210]; 4 bool v[210]; 5 6 void uf_init(int x) 7 { 8 for(int i=0;i<=x;i++) 9 root[i]=i; 10 } 11 12 int uf_find(int x) 13 { 14 if(x!=root[x]) 15 root[x]=uf_find(root[x]); 16 return root[x]; 17 } 18 19 void uf_union(int x, int y) 20 { 21 int tx=uf_find(x); 22 int ty=uf_find(y); 23 if(tx!=ty) 24 root[tx]=ty; 25 } 26 27 int findCircleNum(vector<vector<int>>& M) 28 { 29 int kn=M.size(); 30 uf_init(kn); 31 for(int i=0;i<kn;i++) 32 for(int j=i+1;j<kn;j++) 33 if(M[i][j]) 34 uf_union(i,j); 35 36 memset(v,0,sizeof(v)); 37 int cnt=0; 38 for(int i=0;i<kn;i++) 39 if(!v[uf_find(i)]) 40 { 41 cnt++; 42 v[uf_find(i)]=true; 43 } 44 return cnt; 45 } 46 };
Graph Valid Tree
(权限题做不了嘤嘤嘤)
684. Redundant Connection
并查集找无向图中的环,比较裸的题
1 #include <iostream> 2 #include <algorithm> 3 #include <vector> 4 #include <set> 5 #include <map> 6 #include <string> 7 #include <cstring> 8 #include <cstdio> 9 using namespace std; 10 11 12 class Solution { 13 public: 14 int root[1010]; 15 16 void uf_init(int x) 17 { 18 for(int i=0;i<=x;i++) 19 root[i]=i; 20 } 21 22 int uf_find(int x) 23 { 24 if(x!=root[x]) 25 root[x]=uf_find(root[x]); 26 return root[x]; 27 } 28 29 void uf_union(int x, int y) 30 { 31 int tx=uf_find(x); 32 int ty=uf_find(y); 33 if(tx!=ty) 34 root[tx]=ty; 35 } 36 37 vector<int> findRedundantConnection(vector<vector<int>>& edges) 38 { 39 int k=edges.size(); 40 int kx,ky; 41 uf_init(k); 42 for(int i=0;i<k;i++) 43 { 44 kx=edges[i][0]; 45 ky=edges[i][1]; 46 if(uf_find(kx)!=uf_find(ky)) 47 uf_union(kx,ky); 48 else 49 return(edges[i]); 50 } 51 } 52 }; 53 54 55 int main() 56 { 57 Solution sl; 58 return 0; 59 }
685. Redundant Connection II = 改成了有向图,复杂了许多......
不会做嘤嘤嘤
721. Accounts Merge
比较裸的并查集。将email重复的两个账户union一下,最后再输出每个集合
1 class Solution: 2 def uf_init(self,x): 3 self.root=[0 for i in range(x+10)] 4 for i in range(x): 5 self.root[i]=i 6 7 def uf_find(self, x): 8 if(x!=self.root[x]): 9 self.root[x]=self.uf_find(self.root[x]) 10 return self.root[x] 11 12 def uf_union(self, x, y): 13 tx=self.uf_find(x) 14 ty=self.uf_find(y) 15 if(tx!=ty): 16 self.root[tx]=ty 17 18 def similar(self, acc1, acc2): 19 res=0 20 if(acc1[0]!=acc2[0]): 21 return res 22 for i in acc1[1:]: 23 for j in acc2[1:]: 24 if(i==j): 25 res=1 26 return res 27 28 def accountsMerge(self, accounts): 29 """ 30 :type accounts: List[List[str]] 31 :rtype: List[List[str]] 32 """ 33 ka=len(accounts) 34 print(ka) 35 self.uf_init(ka) 36 37 hsh={} 38 for i in range(ka): 39 for j in range(len(accounts[i])-1): 40 if(hsh.get(accounts[i][j+1])!=None): 41 dx=hsh[accounts[i][j+1]] 42 uf_union(dx,i) 43 else: 44 hsh[accounts[i][j+1]]=i 45 46 47 dct=[set() for i in range(ka)] 48 lbl=["" for i in range(ka)] 49 for i in range(ka): 50 ui=self.uf_find(i) 51 lbl[ui]=accounts[i][0] 52 for j in range(len(accounts[i])-1): 53 dct[ui].add(accounts[i][j+1]) 54 55 ans=[] 56 for i in range(ka): 57 if(lbl[i]!=""): 58 tmp=[] 59 for j in dct[i]: 60 tmp.append(j) 61 tmp.sort() 62 tmp=[lbl[i]]+tmp 63 ans.append(tmp) 64 65 return ans
注意用hashmap优化掉两重循环的方法,比较常用
1 for i in range(0,ka): 2 for j in range(i+1,ka): 3 if(self.similar(accounts[i],accounts[j])): 4 self.uf_union(i,j)
1 hsh={} 2 for i in range(ka): 3 for j in range(len(accounts[i])-1): 4 if(hsh.get(accounts[i][j+1])!=None): 5 dx=hsh[accounts[i][j+1]] 6 uf_union(dx,i) 7 else: 8 hsh[accounts[i][j+1]]=i
399. Evaluate Division
一开始想了半天是不是数学题...其实在纸上画画可以发现,这是一个图论题......
这样就转化成了求图中每对节点最短路问题,这时小学生会选择用Floyd算法,时间复杂度O(N^3)
1 #define GMAX 0x7f7f7f7f 2 // initiate double with maxium value: 3 // https://blog.csdn.net/popoqqq/article/details/38926889 4 5 class Solution { 6 public: 7 double graph[1010][1010]; 8 9 vector<double> calcEquation(vector<pair<string, string>> equations, 10 vector<double>& values, 11 vector<pair<string, string>> queries) 12 { 13 memset(graph,0x7f,sizeof(graph)); 14 cout<<graph[4][3]<<endl; 15 int kl=values.size(), kq=queries.size(); 16 map<string,int> dict; 17 int dcnt=0,dx,dy; 18 for(int i=0;i<kl;i++) 19 { 20 if(dict.find(equations[i].first)==dict.end()) 21 { 22 dcnt++; 23 dict.insert(pair<string, int>(equations[i].first, dcnt)); 24 } 25 if(dict.find(equations[i].second)==dict.end()) 26 { 27 dcnt++; 28 dict.insert(pair<string, int>(equations[i].second, dcnt)); 29 } 30 dx=dict[equations[i].first]; 31 dy=dict[equations[i].second]; 32 graph[dx][dy]=values[i]; 33 graph[dy][dx]=1/values[i]; 34 cout<<dx<<"--"<<dy<<" "<<values[i]<<endl; 35 } 36 37 for(int i=1;i<=dcnt;i++) 38 graph[i][i]=1; 39 for(int k=1;k<=dcnt;k++) 40 for(int i=1;i<=dcnt;i++) 41 for(int j=1;j<=dcnt;j++) 42 if(graph[i][k]<GMAX && graph[k][j]<GMAX) 43 graph[i][j]=min(graph[i][j],graph[i][k]*graph[k][j]); 44 45 vector<double> ans; 46 string sx,sy; 47 for(int i=0;i<kq;i++) 48 { 49 sx=queries[i].first; 50 sy=queries[i].second; 51 if(dict.find(sx)==dict.end() || dict.find(sy)==dict.end()) 52 ans.push_back(-1.0); 53 else 54 { 55 dx=dict[sx]; 56 dy=dict[sy]; 57 if(graph[dx][dy]<GMAX) 58 ans.push_back(graph[dx][dy]); 59 else 60 ans.push_back(-1.0); 61 cout<<dx<<"__"<<dy<<endl; 62 } 63 } 64 65 return ans; 66 } 67 };
但大学生们会用并查集来解呢
balabala