zoukankan      html  css  js  c++  java
  • Convergence theorems for measurable functions

    The swapping of integration and taking limit of the integrand, like (int lim_{n ightarrow infty} f_n = lim_{n ightarrow infty} int f_n ), is usually taken for granted as a valid operation in engineering courses. However, if we require mathematical rigorousness, such manipulation relies on additional constraints in order to be feasible. This is governed by a set of convergence theorems about measurable functions. By referring to Halsey Royden's "Real Analysis (3th ed., 2004)", this article compiles these theorems to present an overview of their similarities and differences.

    Let ({f_n}_{n geq 1}) be a sequence of measurable functions defined on a measurable set (E). The measure of (E) is ({ m m}(E)). Let (g) be integrable on (E) and ({g_n}_{n geq 1}) be a sequence of integrable functions which converges a.e. to (g). The integrals in the following are in the sense of Lebesgue integral.

    Theorem

    Requirements on

    $${f_n}_{n geq 1}$$

    $${ m m}(E)$$

    Convergence of
    $${f_n}_{n geq 1}$$

    Boundedness of
    $${f_n}_{n geq 1}$$

    Swapping of integration
    and taking limit
    Bounded
    convergence
    theorem
    Measurable $${ m m}(E)in [0, infty)$$ $f_n ightarrow f$ on $E$ $$abs{f_n(x)} leq M$$ [displaystyle{int_E f = lim_{n ightarrow infty} int_E f_n}]
    Fatou's
    Lemma
    1. Measurable
    2. Nonnegative
    $${ m m}(E) in [0,infty]$$ $f_n ightarrow f$ a.e. on $E$ None [displaystyle{int_E f leq underline limint_E f_n}]
    Monotone
    convergence
    theorem
    1. Measurable
    2. Nonnegative
    3. Increasing
    $${ m m}(E) in [0,infty]$$ $f_n ightarrow f$ a.e. on $E$ None [displaystyle{int_E f = lim_{n ightarrow infty} int_E f_n}]
    Lebesgue
    convergence
    theorem
    Measurable $${ m m}(E) in [0,infty]$$ $f_n ightarrow f$ a.e. on $E$ 1. $abs{f_n} leq g$
    2. $int_E g < infty$
    [displaystyle{int_E f = lim_{n ightarrow infty} int_E f_n}]
    Extended
    Lebesgue
    convergence
    theorem
    Measurable $${ m m}(E) in [0,infty]$$ $f_n ightarrow f$ a.e. on $E$ 1. $abs{f_n} leq g_n$
    2. $int_E g_n < infty$
    3. $g_n ightarrow g$ a.e. on $E$
    4. $int_E g < infty$
    5. $int_E g = lim_{n ightarrow infty} int_E g_n$
    [displaystyle{int_E f = lim_{n ightarrow infty} int_E f_n}]
  • 相关阅读:
    2016第19周三
    2016第19周二
    Android JNI 获取应用程序签名
    HDU 3830 Checkers
    hadoop记录topk
    Codeforces 4A-Watermelon(意甲冠军)
    经验38--新闻内容处理
    Java8高中并发
    ACM-简单的主题Ignatius and the Princess II——hdu1027
    二叉搜索树
  • 原文地址:https://www.cnblogs.com/peabody/p/20200719-Convergence-theorems-for-measurable-funct.html
Copyright © 2011-2022 走看看