题目链接【https://vjudge.net/problem/CSU-1804】
题意: 给出一个有向无环图,然后让你算下面的结果,count(i,j)表示i->j之间的路径条数。
题解: 根据公式,可以把SUMa[i]提出来,然后对于没给我i点求SUMcount(i,j)*bj;
#include<bits/stdc++.h> using namespace std; typedef long long LL; const int mod = 1e9 + 7; const int maxn = 1e5 + 15; int N, M; LL A[maxn], B[maxn], dp[maxn]; int vis[maxn]; struct Edge { int to, next; Edge (int to = 0, int next = 0): to(to), next(next) {} } E[maxn]; int head[maxn], tot; void initedge() { for(int i = 0; i <= N; i++) head[i] = dp[i] = -1, vis[i] = 0; tot = 0; } void addedge(int u, int v) { E[tot] = Edge(v, head[u]); head[u] = tot++; } LL DFS(int u) { if(dp[u] != -1) return dp[u]; vis[u] = 1; dp[u] = 0; for(int k = head[u]; ~k; k = E[k].next) { int v = E[k].to; dp[u] = (dp[u] + (B[v] + DFS(v)) % mod) % mod; } return dp[u]; } int main () { while(~scanf("%d %d", &N, &M)) { for(int i = 1; i <= N; i++) scanf("%lld %lld", &A[i], &B[i]); initedge(); for(int i = 1; i <= M; i++) { int u, v; scanf("%d %d", &u, &v); addedge(u, v); } for(int i = 1; i <= N; i++) if(!vis[i]) DFS(i); LL ans = 0; for(int i = 1; i <= N; i++) ans = (ans + (dp[i] * A[i]) % mod) % mod; printf("%lld ", ans); } return 0; }