zoukankan      html  css  js  c++  java
  • 学习笔记之k-nearest neighbors algorithm (k-NN)

    k-nearest neighbors algorithm - Wikipedia

    • https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
    • Not to be confused with k-means clustering.
    • In pattern recognition, the k-nearest neighbors algorithm (k-NN) is a non-parametric method used for classification and regression.[1] In both cases, the input consists of the k closest training examples in the feature space. The output depends on whether k-NN is used for classification or regression.
    • k-NN is a type of instance-based learning, or lazy learning, where the function is only approximated locally and all computation is deferred until classification. The k-NN algorithm is among the simplest of all machine learning algorithms.

    学习笔记之scikit-learn - 浩然119 - 博客园

    • https://www.cnblogs.com/pegasus923/p/9997485.html
    • 1.6. Nearest Neighbors — scikit-learn 0.20.2 documentation
      • https://scikit-learn.org/stable/modules/neighbors.html#nearest-neighbors-classification

    Machine Learning with Python: k-Nearest Neighbor Classifier in Python

    • https://www.python-course.eu/k_nearest_neighbor_classifier.php

    Refining a k-Nearest-Neighbor classification

    • https://www3.nd.edu/~steve/computing_with_data/17_Refining_kNN/refining_knn.html

    1.13. Feature selection — scikit-learn 0.20.2 documentation

    • https://scikit-learn.org/stable/modules/feature_selection.html

    K近邻法(KNN)原理小结 - 刘建平Pinard - 博客园

    • http://www.cnblogs.com/pinard/p/6061661.html
    • 1. KNN算法三要素
    • 2. KNN算法蛮力实现
    • 3. KNN算法之KD树实现原理
    • 4. KNN算法之球树实现原理
    • 5. KNN算法的扩展
    • 6. KNN算法小结

    scikit-learn K近邻法类库使用小结 - 刘建平Pinard - 博客园

    • https://www.cnblogs.com/pinard/p/6065607.html
    • 1. scikit-learn 中KNN相关的类库概述
    • 2. K近邻法和限定半径最近邻法类库参数小结
    • 3. 使用KNeighborsClassifier做分类的实例

    特征工程之特征选择 - 刘建平Pinard - 博客园

    • https://www.cnblogs.com/pinard/p/9032759.html

    特征工程之特征表达 - 刘建平Pinard - 博客园

    • https://www.cnblogs.com/pinard/p/9061549.html

    特征工程之特征预处理 - 刘建平Pinard - 博客园

    • https://www.cnblogs.com/pinard/p/9093890.html

    精确率与召回率,RoC曲线与PR曲线 - 刘建平Pinard - 博客园

    • https://www.cnblogs.com/pinard/p/5993450.html

    k selection

    • 设定区间范围,e.g. [1, 25],测试所有k再比较结果

    Feature selection

    • ablation study : removing some “feature” of the model or algorithm, and seeing how that affects performance.
      • 注意如果去掉一个feature之后结果并没有变化,不能说明这个feature没用,原因可能是:
        • conditionally independant of the given feature : 其他feature对结果的影响跟它一样
        • 不相关feature
    • test with specified features only
      • 注意一个feature有可能跟其他feature一起配合才对结果有positive impact
    • test with all combination of features
      • 最全面的方法是覆盖所有组合,但是费时
      • 折中的方法是从上面两种测试结果中选择出一个小范围有用的feature list,然后测试feature list,跟all features比较性能
  • 相关阅读:
    【RL-TCPnet网络教程】第3章 初学RL-TCPnet的准备工作及其快速上手
    【二代示波器教程】第15章 FreeRTOS操作系统版本二代示波器实现
    【RL-TCPnet网络教程】第2章 嵌入式网络协议栈基础知识
    【二代示波器教程】第14章 uCOS-III操作系统版本二代示波器实现
    【RL-TCPnet网络教程】第1章 当前主流的小型嵌入式网络协议栈
    徐州网络赛H-Ryuji doesn't want to study【线段树】
    徐州网络赛F-Feature Trace【暴力】
    徐州网络赛C-Cacti Lottery【DFS】
    南京网络赛I-Skr【回文树模板】
    AC自动机
  • 原文地址:https://www.cnblogs.com/pegasus923/p/10417872.html
Copyright © 2011-2022 走看看