zoukankan      html  css  js  c++  java
  • 900W+数据只用300ms搞定!SQL查询优化这样做最快耗时347ms

    本案例的背景是这样的:有一张财务流水表,未分库分表,目前的数据量为9555695,分页查询使用到了limit,优化之前的查询耗时16s 938ms (execution: 16 s 831 ms, fetching: 107 ms),按照本文的方式调整SQL后,耗时347ms (execution: 163 ms, fetching: 184 ms)。

    • 操作:查询条件放到子查询中,子查询只查主键ID,然后使用子查询中确定的主键关联查询其他的属性字段

    • 原理:减少回表操作

    优化前SQL:

    SELECT 各种字段 FROM `table_name` WHERE 各种条件 LIMIT 0,10;

    优化后SQL:

    SELECT 各种字段 FROM `table_name` main_tale RIGHT JOIN ( SELECT 子查询只查主键 FROM `table_name` WHERE 各种条件 LIMIT 0,10; ) temp_table ON temp_table.主键 = main_table.主键

    900W+数据只用300ms搞定!SQL查询优化这样做最快

    前言

    首先说明一下MySQL的版本:

    mysql> select version; +-----------+  | version |  +-----------+  | 5.7.17 |  +-----------+  1 row in set (0.00 sec)

    表结构:

    mysql> desc test; +--------+---------------------+------+-----+---------+----------------+ | Field | Type | | Key | Default | Extra | +--------+---------------------+------+-----+---------+----------------+ | id | bigint(20) unsigned | NO | PRI | | auto_increment | | val | int(10) unsigned | NO | MUL | 0 | | | source | int(10) unsigned | NO | | 0 | | +--------+---------------------+------+-----+---------+----------------+ 3 rows in set (0.00 sec)

    id为自增主键,val为非唯一索引。

    灌入大量数据,共500万:

    mysql> select count(*) from test; +----------+ | count(*) | +----------+ | 5242882 | +----------+ 1 row in set (4.25 sec)

    我们知道,当limit offset rows中的offset很大时,会出现效率问题:

    mysql> select * from test where val=4 limit 300000,5; +---------+-----+--------+ | id | val | source | +---------+-----+--------+ | 3327622 | 4 | 4 | | 3327632 | 4 | 4 | | 3327642 | 4 | 4 | | 3327652 | 4 | 4 | | 3327662 | 4 | 4 | +---------+-----+--------+ 5 rows in set (15.98 sec)

    为了达到相同的目的,我们一般会改写成如下语句:

    mysql> select * from test a inner join (select id from test where val=4 limit 300000,5) b on a.id=b.id; +---------+-----+--------+---------+ | id | val | source | id | +---------+-----+--------+---------+ | 3327622 | 4 | 4 | 3327622 | | 3327632 | 4 | 4 | 3327632 | | 3327642 | 4 | 4 | 3327642 | | 3327652 | 4 | 4 | 3327652 | | 3327662 | 4 | 4 | 3327662 | +---------+-----+--------+---------+ 5 rows in set (0.38 sec)

    时间相差很明显。

    为什么会出现上面的结果?我们看一下select * from test where val=4 limit 300000,5;的查询过程:

    查询到索引叶子节点数据。根据叶子节点上的主键值去聚簇索引上查询需要的全部字段值。

    类似于下面这张图:

    900W+数据只用300ms搞定!SQL查询优化这样做最快

    像上面这样,需要查询300005次索引节点,查询300005次聚簇索引的数据,最后再将结果过滤掉前300000条,取出最后5条。MySQL耗费了大量随机I/O在查询聚簇索引的数据上,而有300000次随机I/O查询到的数据是不会出现在结果集当中的。肯定会有人问:既然一开始是利用索引的,为什么不先沿着索引叶子节点查询到最后需要的5个节点,然后再去聚簇索引中查询实际数据。这样只需要5次随机I/O,类似于下面图片的过程:

    900W+数据只用300ms搞定!SQL查询优化这样做最快

    其实我也想问这个问题。

    证实

    下面我们实际操作一下来证实上述的推论:为了证实select * from test where val=4 limit 300000,5是扫描300005个索引节点和300005个聚簇索引上的数据节点,我们需要知道MySQL有没有办法统计在一个sql中通过索引节点查询数据节点的次数。

    我先试了Handler_read_*系列,很遗憾没有一个变量能满足条件。我只能通过间接的方式来证实:InnoDB中有buffer pool。里面存有最近访问过的数据页,包括数据页和索引页。所以我们需要运行两个SQL,来比较buffer pool中的数据页的数量。

    预测结果是运行select * from test a inner join (select id from test where val=4 limit 300000,5); 之后,buffer pool中的数据页的数量远远少于select * from test where val=4 limit 300000,5;对应的数量,因为前一个sql只访问5次数据页,而后一个sql访问300005次数据页。select * from test where val=4 limit 300000,5

    mysql> select index_name,count(*) from information_schema.INNODB_BUFFER_PAGE where INDEX_NAME in('val','primary') and TABLE_NAME like '%test%' group by index_name;Empty set (0.04 sec)

    可以看出,目前buffer pool中没有关于test表的数据页。

    mysql> select * from test where val=4 limit 300000,5; +---------+-----+--------+ | id | val | source | +---------+-----+--------+| 3327622 | 4 | 4 | | 3327632 | 4 | 4 | | 3327642 | 4 | 4 | | 3327652 | 4 | 4 | | 3327662 | 4 | 4 | +---------+-----+--------+ 5 rows in set (26.19 sec) mysql> select index_name,count(*) from information_schema.INNODB_BUFFER_PAGE where INDEX_NAME in('val','primary') and TABLE_NAME like '%test%' group by index_name; +------------+----------+ | index_name | count(*) | +------------+----------+ | PRIMARY | 4098 | | val | 208 | +------------+----------+2 rows in set (0.04 sec)

    可以看出,此时buffer pool中关于test表有4098个数据页,208个索引页。select * from test a inner join (select id from test where val=4 limit 300000,5) ;为了防止上次试验的影响,我们需要清空buffer pool,重启MySQL。

    mysqladmin shutdown /usr/local/bin/mysqld_safe & mysql> select index_name,count(*) from information_schema.INNODB_BUFFER_PAGE where INDEX_NAME in('val','primary') and TABLE_NAME like '%test%' group by index_name; Empty set (0.03 sec)

    运行SQL:

    mysql> select * from test a inner join (select id from test where val=4 limit 300000,5) b on a.id=b.id; +---------+-----+--------+---------+ | id | val | source | id | +---------+-----+--------+---------+ | 3327622 | 4 | 4 | 3327622 | | 3327632 | 4 | 4 | 3327632 | | 3327642 | 4 | 4 | 3327642 | | 3327652 | 4 | 4 | 3327652 | | 3327662 | 4 | 4 | 3327662 | +---------+-----+--------+---------+ 5 rows in set (0.09 sec) mysql> select index_name,count(*) from information_schema.INNODB_BUFFER_PAGE where INDEX_NAME in('val','primary') and TABLE_NAME like '%test%' group by index_name; +------------+----------+ | index_name | count(*) | +------------+----------+ | PRIMARY | 5 | | val | 390 | +------------+----------+ 2 rows in set (0.03 sec)

    我们可以明显的看出两者的差别:第一个sql加载了4098个数据页到buffer pool,而第二个sql只加载了5个数据页到buffer pool。符合我们的预测。也证实了为什么第一个sql会慢:读取大量的无用数据行(300000),最后却抛弃掉。

    而且这会造成一个问题:加载了很多热点不是很高的数据页到buffer pool,会造成buffer pool的污染,占用buffer pool的空间。遇到的问题为了在每次重启时确保清空buffer pool,我们需要关闭innodb_buffer_pool_dump_at_shutdown和innodb_buffer_pool_load_at_startup,这两个选项能够控制数据库关闭时dump出buffer pool中的数据和在数据库开启时载入在磁盘上备份buffer pool的数据。

  • 相关阅读:
    十年经验大牛浅谈自动化测试与测试用例的编写
    从功能测试到自动化测试,携程大牛总结一些工作经验分享
    阿里大牛谈软件测试面试的几个建议
    记一个Selenium自动化测试网页
    腾讯大牛教你简单的自动化测试模型(Python+Selenium)
    阿里大牛教你基于Python的 Selenium自动化测试示例解析
    携程大牛谈自动化测试里的数据驱动和关键字驱动思路的理解
    论:关于自动化测试的前期发展历史及未来发展趋势
    阿里大牛教你一分钟了解自动化测试
    绑定银行卡的一些细节
  • 原文地址:https://www.cnblogs.com/peijz/p/12710365.html
Copyright © 2011-2022 走看看