zoukankan      html  css  js  c++  java
  • 人工智能深度学习:如何实现CNN变体网络?

    1.载入数据

    (x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
    x_train = x_train.reshape((-1,28,28,1))
    x_test = x_test.reshape((-1,28,28,1))
    print(x_train.shape, ' ', y_train.shape)
    print(x_test.shape, ' ', y_test.shape)
    (60000, 28, 28, 1)   (60000,)
    (10000, 28, 28, 1)   (10000,)

    2.简单的深度网络

    如AlexNet,VggNet

    x_shape  = x_train.shape
    deep_model = keras.Sequential(
    [
        layers.Conv2D(input_shape=((x_shape[1], x_shape[2], x_shape[3])),
                     filters=32, kernel_size=(3,3), strides=(1,1), padding='same', activation='relu'),
        layers.Conv2D(filters=32, kernel_size=(3,3), strides=(1,1), padding='same', activation='relu'),
        layers.MaxPool2D(pool_size=(2,2)),
        layers.Conv2D(filters=32, kernel_size=(3,3), strides=(1,1), padding='same', activation='relu'),
        layers.Conv2D(filters=32, kernel_size=(3,3), strides=(1,1), padding='same', activation='relu'),
        layers.MaxPool2D(pool_size=(2,2)),
        layers.Flatten(),
        layers.Dense(32, activation='relu'),
        layers.Dense(10, activation='softmax')
    
    ])
    deep_model.compile(optimizer=keras.optimizers.Adam(),
                 loss=keras.losses.SparseCategoricalCrossentropy(),
                metrics=['accuracy'])
    deep_model.summary()
    Model: "sequential"
    _________________________________________________________________
    Layer (type)                 Output Shape              Param #   
    =================================================================
    conv2d (Conv2D)              (None, 28, 28, 32)        320       
    _________________________________________________________________
    conv2d_1 (Conv2D)            (None, 28, 28, 32)        9248      
    _________________________________________________________________
    max_pooling2d (MaxPooling2D) (None, 14, 14, 32)        0         
    _________________________________________________________________
    conv2d_2 (Conv2D)            (None, 14, 14, 32)        9248      
    _________________________________________________________________
    conv2d_3 (Conv2D)            (None, 14, 14, 32)        9248      
    _________________________________________________________________
    max_pooling2d_1 (MaxPooling2 (None, 7, 7, 32)          0         
    _________________________________________________________________
    flatten (Flatten)            (None, 1568)              0         
    _________________________________________________________________
    dense (Dense)                (None, 32)                50208     
    _________________________________________________________________
    dense_1 (Dense)              (None, 10)                330       
    =================================================================
    Total params: 78,602
    Trainable params: 78,602
    Non-trainable params: 0
    _________________________________________________________________
    history = deep_model.fit(x_train, y_train, batch_size=64, epochs=5, validation_split=0.1)
    
    
    [0.04454196666887728, 0.9863]
    import matplotlib.pyplot as plt
    plt.plot(history.history['accuracy'])
    plt.plot(history.history['val_accuracy'])
    plt.legend(['training', 'valivation'], loc='upper left')
    plt.show()

     

    result = deep_model.evaluate(x_test, y_test)
    10000/10000 [==============================] - 2s 219us/sample - loss: 0.0445 - accuracy: 0.9863

    3.添加了其它功能层的深度卷积

    x_shape  = x_train.shape
    deep_model = keras.Sequential(
    [
        layers.Conv2D(input_shape=((x_shape[1], x_shape[2], x_shape[3])),
                     filters=32, kernel_size=(3,3), strides=(1,1), padding='same', activation='relu'),
        layers.BatchNormalization(),
        layers.Conv2D(filters=32, kernel_size=(3,3), strides=(1,1), padding='same', activation='relu'),
        layers.BatchNormalization(),
        layers.MaxPool2D(pool_size=(2,2)),
        layers.Conv2D(filters=32, kernel_size=(3,3), strides=(1,1), padding='same', activation='relu'),
        layers.BatchNormalization(),
        layers.BatchNormalization(),
        layers.Conv2D(filters=32, kernel_size=(3,3), strides=(1,1), padding='same', activation='relu'),
        layers.MaxPool2D(pool_size=(2,2)),
        layers.Flatten(),
        layers.Dense(32, activation='relu'),
        layers.Dropout(0.2),
        layers.Dense(10, activation='softmax')
    
    ])
    deep_model.compile(optimizer=keras.optimizers.Adam(),
                 loss=keras.losses.SparseCategoricalCrossentropy(),
                metrics=['accuracy'])
    deep_model.summary()
    Model: "sequential_1"
    _________________________________________________________________
    Layer (type)                 Output Shape              Param #   
    =================================================================
    conv2d_4 (Conv2D)            (None, 28, 28, 32)        320       
    _________________________________________________________________
    batch_normalization_v2 (Batc (None, 28, 28, 32)        128       
    _________________________________________________________________
    conv2d_5 (Conv2D)            (None, 28, 28, 32)        9248      
    _________________________________________________________________
    batch_normalization_v2_1 (Ba (None, 28, 28, 32)        128       
    _________________________________________________________________
    max_pooling2d_2 (MaxPooling2 (None, 14, 14, 32)        0         
    _________________________________________________________________
    conv2d_6 (Conv2D)            (None, 14, 14, 32)        9248      
    _________________________________________________________________
    batch_normalization_v2_2 (Ba (None, 14, 14, 32)        128       
    _________________________________________________________________
    batch_normalization_v2_3 (Ba (None, 14, 14, 32)        128       
    _________________________________________________________________
    conv2d_7 (Conv2D)            (None, 14, 14, 32)        9248      
    _________________________________________________________________
    max_pooling2d_3 (MaxPooling2 (None, 7, 7, 32)          0         
    _________________________________________________________________
    flatten_1 (Flatten)          (None, 1568)              0         
    _________________________________________________________________
    dense_2 (Dense)              (None, 32)                50208     
    _________________________________________________________________
    dropout (Dropout)            (None, 32)                0         
    _________________________________________________________________
    dense_3 (Dense)              (None, 10)                330       
    =================================================================
    Total params: 79,114
    Trainable params: 78,858
    Non-trainable params: 256
    _________________________________________________________________
    history = deep_model.fit(x_train, y_train, batch_size=64, epochs=5, validation_split=0.1)
    Train on 54000 samples, validate on 6000 samples
    Epoch 1/5
    54000/54000 [==============================] - 120s 2ms/sample - loss: 0.2683 - accuracy: 0.9163 - val_loss: 0.0470 - val_accuracy: 0.9880
    ...
    Epoch 5/5
    54000/54000 [==============================] - 115s 2ms/sample - loss: 0.0504 - accuracy: 0.9839 - val_loss: 0.0315 - val_accuracy: 0.9922
    import matplotlib.pyplot as plt
    plt.plot(history.history['accuracy'])
    plt.plot(history.history['val_accuracy'])
    plt.legend(['training', 'valivation'], loc='upper left')
    plt.show()

     

    result = deep_model.evaluate(x_test, y_test)
    10000/10000 [==============================] - 4s 365us/sample - loss: 0.0288 - accuracy: 0.9909

    4.NIN网络

    Min等人在 2013年(arxiv.org/abs/1312.4400)提出了减少模型中参数数量的方法之一 即“网络中的网络(NIN)”或“1X1卷积” 方法很简单 - 在其他卷积层之后添加卷积层 具有降低图像空间的维度(深度)的效果,有效地减少了参数的数量

    GoogleNet 中就用到了NIN结构

    x_shape  = x_train.shape
    deep_model = keras.Sequential(
    [
        layers.Conv2D(input_shape=((x_shape[1], x_shape[2], x_shape[3])),
                     filters=32, kernel_size=(3,3), strides=(1,1), padding='same', activation='relu'),
        layers.BatchNormalization(),
        layers.Conv2D(filters=16, kernel_size=(1,1), strides=(1,1), padding='valid', activation='relu'),
        layers.BatchNormalization(),
        layers.MaxPool2D(pool_size=(2,2)),
        layers.Conv2D(filters=32, kernel_size=(3,3), strides=(1,1), padding='same', activation='relu'),
        layers.BatchNormalization(),
        layers.Conv2D(filters=16, kernel_size=(1,1), strides=(1,1), padding='valid', activation='relu'),
        layers.BatchNormalization(),
        layers.MaxPool2D(pool_size=(2,2)),
        layers.Flatten(),
        layers.Dense(32, activation='relu'),
        layers.Dropout(0.2),
        layers.Dense(10, activation='softmax')
    
    ])
    deep_model.compile(optimizer=keras.optimizers.Adam(),
                 loss=keras.losses.SparseCategoricalCrossentropy(),
                metrics=['accuracy'])
    deep_model.summary()
    Model: "sequential_2"
    _________________________________________________________________
    Layer (type)                 Output Shape              Param #   
    =================================================================
    conv2d_8 (Conv2D)            (None, 28, 28, 32)        320       
    _________________________________________________________________
    batch_normalization_v2_4 (Ba (None, 28, 28, 32)        128       
    _________________________________________________________________
    conv2d_9 (Conv2D)            (None, 28, 28, 16)        528       
    _________________________________________________________________
    batch_normalization_v2_5 (Ba (None, 28, 28, 16)        64        
    _________________________________________________________________
    max_pooling2d_4 (MaxPooling2 (None, 14, 14, 16)        0         
    _________________________________________________________________
    conv2d_10 (Conv2D)           (None, 14, 14, 32)        4640      
    _________________________________________________________________
    batch_normalization_v2_6 (Ba (None, 14, 14, 32)        128       
    _________________________________________________________________
    conv2d_11 (Conv2D)           (None, 14, 14, 16)        528       
    _________________________________________________________________
    batch_normalization_v2_7 (Ba (None, 14, 14, 16)        64        
    _________________________________________________________________
    max_pooling2d_5 (MaxPooling2 (None, 7, 7, 16)          0         
    _________________________________________________________________
    flatten_2 (Flatten)          (None, 784)               0         
    _________________________________________________________________
    dense_4 (Dense)              (None, 32)                25120     
    _________________________________________________________________
    dropout_1 (Dropout)          (None, 32)                0         
    _________________________________________________________________
    dense_5 (Dense)              (None, 10)                330       
    =================================================================
    Total params: 31,850
    Trainable params: 31,658
    Non-trainable params: 192
    _________________________________________________________________
    history = deep_model.fit(x_train, y_train, batch_size=64, epochs=5, validation_split=0.1)
    Train on 54000 samples, validate on 6000 samples
    Epoch 1/5
    54000/54000 [==============================] - 62s 1ms/sample - loss: 0.2729 - accuracy: 0.9147 - val_loss: 0.0657 - val_accuracy: 0.9818
    ...
    Epoch 5/5
    54000/54000 [==============================] - 49s 913us/sample - loss: 0.0441 - accuracy: 0.9860 - val_loss: 0.0435 - val_accuracy: 0.9892
    plt.plot(history.history['accuracy'])
    plt.plot(history.history['val_accuracy'])
    plt.legend(['training', 'valivation'], loc='upper left')
    plt.show()

     

    result = deep_model.evaluate(x_test, y_test)
    10000/10000 [==============================] - 2s 196us/sample - loss: 0.0335 - accuracy: 0.9887
  • 相关阅读:
    python、Java、大数据和Android的薪资如何?
    php最新版本配置mysqli
    使用Python3爬虫抓取网页来下载小说
    pygame事件之——控制物体(飞机)的移动
    用javascript做别踩白块游戏2
    用javascript做别踩白块游戏1
    select、poll、epoll之间的区别总结(IO同、异步、(非)阻塞)----内核态、用户态
    元类
    python大神-javascript知识
    python大神-html知识
  • 原文地址:https://www.cnblogs.com/peijz/p/13206047.html
Copyright © 2011-2022 走看看