zoukankan      html  css  js  c++  java
  • Oracle分组函数之CUBE魅力

    Oracle的CUBE与ROLLUP功能很相似,也是在数据统计分析领域的一把好手。
    关于ROLLUP的查询统计功能请参考文章《Oracle分组函数之ROLLUP魅力》(http://www.linuxidc.com/Linux/2012-08/67357.htm)。

    1.先看一下ROLLUP的数据统计效果
    1)创建测试表group_test
    SECOOLER@ora11g> create table group_test (group_id int, job varchar2(10), name varchar2(10), salary int);

    Table created.

    2)初始化数据
    insert into group_test values (10,'Coding',    'Bruce',1000);
    insert into group_test values (10,'Programmer','Clair',1000);
    insert into group_test values (10,'Architect', 'Gideon',1000);
    insert into group_test values (10,'Director',  'Hill',1000);

    insert into group_test values (20,'Coding',    'Jason',2000);
    insert into group_test values (20,'Programmer','Joey',2000);
    insert into group_test values (20,'Architect', 'Martin',2000);
    insert into group_test values (20,'Director',  'Michael',2000);

    insert into group_test values (30,'Coding',    'Rebecca',3000);
    insert into group_test values (30,'Programmer','Rex',3000);
    insert into group_test values (30,'Architect', 'Richard',3000);
    insert into group_test values (30,'Director',  'Sabrina',3000);

    insert into group_test values (40,'Coding',    'Samuel',4000);
    insert into group_test values (40,'Programmer','Susy',4000);
    insert into group_test values (40,'Architect', 'Tina',4000);
    insert into group_test values (40,'Director',  'Wendy',4000);

    commit;

    3)初始化之后的数据情况如下:
    SECOOLER@ora11g> set pages 100
    SECOOLER@ora11g> select * from group_test;

      GROUP_ID JOB        NAME           SALARY
    ---------- ---------- ---------- ----------
            10 Coding     Bruce            1000
            10 Programmer Clair            1000
            10 Architect  Gideon           1000
            10 Director   Hill             1000
            20 Coding     Jason            2000
            20 Programmer Joey             2000
            20 Architect  Martin           2000
            20 Director   Michael          2000
            30 Coding     Rebecca          3000
            30 Programmer Rex              3000
            30 Architect  Richard          3000
            30 Director   Sabrina          3000
            40 Coding     Samuel           4000
            40 Programmer Susy             4000
            40 Architect  Tina             4000
            40 Director   Wendy            4000

    16 rows selected.

    4)ROLLUP的数据统计效果
    sec@ora10g> select group_id,job,grouping(GROUP_ID),grouping(JOB),sum(salary) from group_test group by rollup(group_id, job);

      GROUP_ID JOB        GROUPING(GROUP_ID) GROUPING(JOB) SUM(SALARY)
    ---------- ---------- ------------------ ------------- -----------
            10 Coding                      0             0        1000
            10 Director                    0             0        1000
            10 Architect                   0             0        1000
            10 Programmer                  0             0        1000
            10                             0             1        4000
            20 Coding                      0             0        2000
            20 Director                    0             0        2000
            20 Architect                   0             0        2000
            20 Programmer                  0             0        2000
            20                             0             1        8000
            30 Coding                      0             0        3000
            30 Director                    0             0        3000
            30 Architect                   0             0        3000
            30 Programmer                  0             0        3000
            30                             0             1       12000
            40 Coding                      0             0        4000
            40 Director                    0             0        4000
            40 Architect                   0             0        4000
            40 Programmer                  0             0        4000
            40                             0             1       16000
                                           1             1       40000

    21 rows selected.

    2.进一步体验CUBE的魅力
    sec@ora10g> select group_id,job,grouping(GROUP_ID),grouping(JOB),sum(salary) from group_test group by cube(group_id, job) order by 1;

      GROUP_ID JOB        GROUPING(GROUP_ID) GROUPING(JOB) SUM(SALARY)
    ---------- ---------- ------------------ ------------- -----------
            10 Architect                   0             0        1000
            10 Coding                      0             0        1000
            10 Director                    0             0        1000
            10 Programmer                  0             0        1000
            10                             0             1        4000
            20 Architect                   0             0        2000
            20 Coding                      0             0        2000
            20 Director                    0             0        2000
            20 Programmer                  0             0        2000
            20                             0             1        8000
            30 Architect                   0             0        3000
            30 Coding                      0             0        3000
            30 Director                    0             0        3000
            30 Programmer                  0             0        3000
            30                             0             1       12000
            40 Architect                   0             0        4000
            40 Coding                      0             0        4000
            40 Director                    0             0        4000
            40 Programmer                  0             0        4000
            40                             0             1       16000
               Architect                   1             0       10000
               Coding                      1             0       10000
               Director                    1             0       10000
               Programmer                  1             0       10000
                                           1             1       40000

    25 rows selected.

      解释如上结果中GROUPING函数返回值“0”和“1”的含义。
      如果显示“1”表示CUBE函数对应的列(例如JOB字段)是由于CUBE函数所产生的空值对应的信息,即对此列进行汇总计算后的结果。
      如果显示“0”表示此行对应的这列参未与ROLLUP函数分组汇总活动。
      如果还是没有理解清楚,请参见Oracle官方文档中的描述内容:“Using a single column as its argument,GROUPINGreturns 1 when it encounters aNULLvalue created by aROLLUPorCUBEoperation. That is, if theNULLindicates the row is a subtotal,GROUPINGreturns a 1. Any other type of value, including a storedNULL, returns a 0.”

    3.仔细观察一下,CUBE与ROLLUP之间的细微差别
    rollup(a,b)   统计列包含:(a,b)、(a)、()
    rollup(a,b,c) 统计列包含:(a,b,c)、(a,b)、(a)、()
    ……以此类推ing……

    cube(a,b)     统计列包含:(a,b)、(a)、(b)、()
    cube(a,b,c)   统计列包含:(a,b,c)、(a,b)、(a,c)、(b,c)、(a)、(b)、(c)、()
    ……以此类推ing……

    So,上面例子中CUBE的结果比ROLLUP多了下面关于第一列GROUP_ID的统计信息:
               Architect                   1             0       10000
               Coding                      1             0       10000
               Director                    1             0       10000

    4.小结
      CUBE在ROLLUP的基础上进一步从各种维度上给出细化的统计汇总结果。
      CUBE与GROUP BY的关系可以参考Oracle官方文档中的例子,链接如下:,链接如下:《CUBE Extension to GROUP BY》http://docs.oracle.com/cd/E11882_01/server.112/e25554/aggreg.htm#DWHSG8614

  • 相关阅读:
    【django后端分离】Django Rest Framework之一般配置(简单剖析)
    【python小随笔】celery周期任务(简单原理)
    【django后端分离】mysql原生查询命令后,RawQueryset类型的自定义序列化返回json格式
    【python小随笔】Django+错误日志(配置Django报错文件指定位置)
    luogu P3194 [HNOI2008]水平可见直线 |单调栈
    luogu P6247 [SDOI2012]最近最远点对 |随机化
    luogu P3567 [POI2014]KUR-Couriers |莫队+随机化
    P6569 [NOI Online #3 提高组]魔法值| 矩阵乘法
    luogu P1452 【模板】旋转卡壳
    luogu P3829 [SHOI2012]信用卡凸包 |凸包
  • 原文地址:https://www.cnblogs.com/pekkle/p/6568777.html
Copyright © 2011-2022 走看看