zoukankan      html  css  js  c++  java
  • Data Structure and Algorithm

    • new climb stairs

      step: 1 2 3, two adjacent steps cannot be the same.

    • 120. Triangle

      Given a triangle array, return the minimum path sum from top to bottom.

      For each step, you may move to an adjacent number of the row below. More formally, if you are on index i on the current row, you may move to either index i or index i + 1 on the next row.

      Example 1:

      Input: triangle = [[2],[3,4],[6,5,7],[4,1,8,3]]
      Output: 11
      Explanation: The triangle looks like:
         2
        3 4
       6 5 7
      4 1 8 3
      The minimum path sum from top to bottom is 2 + 3 + 5 + 1 = 11 (underlined above).
      

      Example 2:

      Input: triangle = [[-10]]
      Output: -10
      

      Constraints:

      • 1 <= triangle.length <= 200
      • triangle[0].length == 1
      • triangle[i].length == triangle[i - 1].length + 1
      • -104 <= triangle[i][j] <= 104

      Follow up: Could you do this using only O(n) extra space, where n is the total number of rows in the triangle?

      // division: problem(i,j) = min(sub(i+1,j),sub(i+1,j+1)) + a[i,j]
      // dp array: f[i,j]
      // dp equation: f[i][j] = Math.min(f[i+1][j], f[i+1][j+1]) + a[i][j]
      class Solution {
          public int minimumTotal(List<List<Integer>> triangle) {
              int n = triangle.size();
              int[] dp = new int[n];
              for (int i = 0; i < n; i++) {
                  dp[i] = triangle.get(n-1).get(i);
              }
              for (int i = n-2; i >= 0; i--) {
                  for (int j = 0; j <= i; j++) {
                      dp[j] = triangle.get(i).get(j) + Math.min(dp[j], dp[j+1]);
                  }
              }
              return dp[0];
          }
      }
      
      // memo dfs
      
    • 152. Maximum Product Subarray

      Given an integer array nums, find a contiguous non-empty subarray within the array that has the largest product, and return the product.

      It is guaranteed that the answer will fit in a 32-bit integer.

      A subarray is a contiguous subsequence of the array.

      Example 1:

      Input: nums = [2,3,-2,4]
      Output: 6
      Explanation: [2,3] has the largest product 6.
      

      Example 2:

      Input: nums = [-2,0,-1]
      Output: 0
      Explanation: The result cannot be 2, because [-2,-1] is not a subarray.
      

      Constraints:

      • 1 <= nums.length <= 2 * 104
      • -10 <= nums[i] <= 10
      class Solution {
          public int maxProduct(int[] nums) {
              int res = nums[0];
              int min = nums[0], max = nums[0];
              for (int i = 1; i < nums.length; i++) {
                  int t = min;
                  min = Math.min(Math.min(nums[i], nums[i] * min), nums[i] * max);
                  max = Math.max(Math.max(nums[i], nums[i] * max), nums[i] * t);
                  res = Math.max(res, max);
              }
              return res;
          }
      }
      
    • 322. Coin Change

      You are given an integer array coins representing coins of different denominations and an integer amount representing a total amount of money.

      Return the fewest number of coins that you need to make up that amount. If that amount of money cannot be made up by any combination of the coins, return -1.

      You may assume that you have an infinite number of each kind of coin.

      Example 1:

      Input: coins = [1,2,5], amount = 11
      Output: 3
      Explanation: 11 = 5 + 5 + 1
      

      Example 2:

      Input: coins = [2], amount = 3
      Output: -1
      

      Example 3:

      Input: coins = [1], amount = 0
      Output: 0
      

      Example 4:

      Input: coins = [1], amount = 1
      Output: 1
      

      Example 5:

      Input: coins = [1], amount = 2
      Output: 2
      

      Constraints:

      • 1 <= coins.length <= 12
      • 1 <= coins[i] <= 231 - 1
      • 0 <= amount <= 104
      // recur over time
      class Solution {
          int res = Integer.MAX_VALUE;
          public int coinChange(int[] coins, int amount) {
              bfs(coins, amount, 0);
              return res == Integer.MAX_VALUE ? -1 : res;
          }
      
          private void bfs(int[] coins, int amount, int num) {
              if (amount < 0) return ; 
              if (amount == 0) {
                  res = Math.min(res, num);
                  return ;
              }
              for (int coin : coins) {
                  bfs(coins, amount - coin, num + 1);
              }
          }
      }
      
      // DP
      // subproblems: problem[i] = 1 + min(sub(i-coin1),sub(i-coin2),...)
      // dp array: f(n) = min(f(n-k), fpr k in [1,2,5]) + 1
      // dp equation
      class Solution {
          public int coinChange(int[] coins, int amount) {
              int max = amount + 1;
              int[] dp = new int[amount + 1];
              Arrays.fill(dp, max);
              dp[0] = 0;
              for (int i = 1; i <= amount; i++) {
                  for (int coin : coins) {
                      if (coin <= i) {
                          dp[i] = Math.min(dp[i], dp[i - coin] + 1);
                      }
                  }
              }
              return dp[amount] > amount ? -1 : dp[amount];
          }
      }
      
    • 198. House Robber

      You are a professional robber planning to rob houses along a street. Each house has a certain amount of money stashed, the only constraint stopping you from robbing each of them is that adjacent houses have security systems connected and it will automatically contact the police if two adjacent houses were broken into on the same night.

      Given an integer array nums representing the amount of money of each house, return the maximum amount of money you can rob tonight without alerting the police.

      Example 1:

      Input: nums = [1,2,3,1]
      Output: 4
      Explanation: Rob house 1 (money = 1) and then rob house 3 (money = 3).
      Total amount you can rob = 1 + 3 = 4.
      

      Example 2:

      Input: nums = [2,7,9,3,1]
      Output: 12
      Explanation: Rob house 1 (money = 2), rob house 3 (money = 9) and rob house 5 (money = 1).
      Total amount you can rob = 2 + 9 + 1 = 12.
      

      Constraints:

      • 1 <= nums.length <= 100
      • 0 <= nums[i] <= 400
      class Solution {
          public int rob(int[] nums) {
              if (nums.length == 1) return nums[0];
              nums[1] = Math.max(nums[0], nums[1]);
              for (int i = 2; i < nums.length; i++) {
                  nums[i] = Math.max(nums[i] + nums[i-2], nums[i-1]);
              }
              return nums[nums.length - 1];
          }
      }
      
      class Solution {
          public int rob(int[] nums) {
              if (nums.length == 1) return nums[0];
              int[][] dp = new int[nums.length][2];
              dp[0][0] = 0; // not rob
              dp[0][1] = nums[0]; // rob
              for (int i = 1; i < nums.length; i++) {
                  dp[i][0] = Math.max(dp[i-1][1], dp[i-1][0]);
                  dp[i][1] = dp[i-1][0] + nums[i];
              }
              return Math.max(dp[nums.length - 1][0], dp[nums.length - 1][1]);
          }
      }
      
  • 相关阅读:
    mysql分表技术
    TP5.0 excel 导入导出
    整理:手机端弹出提示框,使用的bootstrap中的模态框(modal,弹出层),比kendo弹出效果好
    Bootstrap表单验证插件bootstrapValidator使用方法整理
    input属性为number时,如何去掉+、-号?
    input 属性为 number,maxlength不起作用如何解决?
    mysql给root开启远程访问权限
    thinkphp——通过在线编辑器添加的内容在模板里正确显示(只显示内容,而不是html代码)
    解决网站请求速度慢的一些方法
    JS封闭函数、闭包、内置对象
  • 原文地址:https://www.cnblogs.com/peng8098/p/algorithm10.html
Copyright © 2011-2022 走看看