zoukankan      html  css  js  c++  java
  • Data Structure and Algorithm

    • new climb stairs

      step: 1 2 3, two adjacent steps cannot be the same.

    • 120. Triangle

      Given a triangle array, return the minimum path sum from top to bottom.

      For each step, you may move to an adjacent number of the row below. More formally, if you are on index i on the current row, you may move to either index i or index i + 1 on the next row.

      Example 1:

      Input: triangle = [[2],[3,4],[6,5,7],[4,1,8,3]]
      Output: 11
      Explanation: The triangle looks like:
         2
        3 4
       6 5 7
      4 1 8 3
      The minimum path sum from top to bottom is 2 + 3 + 5 + 1 = 11 (underlined above).
      

      Example 2:

      Input: triangle = [[-10]]
      Output: -10
      

      Constraints:

      • 1 <= triangle.length <= 200
      • triangle[0].length == 1
      • triangle[i].length == triangle[i - 1].length + 1
      • -104 <= triangle[i][j] <= 104

      Follow up: Could you do this using only O(n) extra space, where n is the total number of rows in the triangle?

      // division: problem(i,j) = min(sub(i+1,j),sub(i+1,j+1)) + a[i,j]
      // dp array: f[i,j]
      // dp equation: f[i][j] = Math.min(f[i+1][j], f[i+1][j+1]) + a[i][j]
      class Solution {
          public int minimumTotal(List<List<Integer>> triangle) {
              int n = triangle.size();
              int[] dp = new int[n];
              for (int i = 0; i < n; i++) {
                  dp[i] = triangle.get(n-1).get(i);
              }
              for (int i = n-2; i >= 0; i--) {
                  for (int j = 0; j <= i; j++) {
                      dp[j] = triangle.get(i).get(j) + Math.min(dp[j], dp[j+1]);
                  }
              }
              return dp[0];
          }
      }
      
      // memo dfs
      
    • 152. Maximum Product Subarray

      Given an integer array nums, find a contiguous non-empty subarray within the array that has the largest product, and return the product.

      It is guaranteed that the answer will fit in a 32-bit integer.

      A subarray is a contiguous subsequence of the array.

      Example 1:

      Input: nums = [2,3,-2,4]
      Output: 6
      Explanation: [2,3] has the largest product 6.
      

      Example 2:

      Input: nums = [-2,0,-1]
      Output: 0
      Explanation: The result cannot be 2, because [-2,-1] is not a subarray.
      

      Constraints:

      • 1 <= nums.length <= 2 * 104
      • -10 <= nums[i] <= 10
      class Solution {
          public int maxProduct(int[] nums) {
              int res = nums[0];
              int min = nums[0], max = nums[0];
              for (int i = 1; i < nums.length; i++) {
                  int t = min;
                  min = Math.min(Math.min(nums[i], nums[i] * min), nums[i] * max);
                  max = Math.max(Math.max(nums[i], nums[i] * max), nums[i] * t);
                  res = Math.max(res, max);
              }
              return res;
          }
      }
      
    • 322. Coin Change

      You are given an integer array coins representing coins of different denominations and an integer amount representing a total amount of money.

      Return the fewest number of coins that you need to make up that amount. If that amount of money cannot be made up by any combination of the coins, return -1.

      You may assume that you have an infinite number of each kind of coin.

      Example 1:

      Input: coins = [1,2,5], amount = 11
      Output: 3
      Explanation: 11 = 5 + 5 + 1
      

      Example 2:

      Input: coins = [2], amount = 3
      Output: -1
      

      Example 3:

      Input: coins = [1], amount = 0
      Output: 0
      

      Example 4:

      Input: coins = [1], amount = 1
      Output: 1
      

      Example 5:

      Input: coins = [1], amount = 2
      Output: 2
      

      Constraints:

      • 1 <= coins.length <= 12
      • 1 <= coins[i] <= 231 - 1
      • 0 <= amount <= 104
      // recur over time
      class Solution {
          int res = Integer.MAX_VALUE;
          public int coinChange(int[] coins, int amount) {
              bfs(coins, amount, 0);
              return res == Integer.MAX_VALUE ? -1 : res;
          }
      
          private void bfs(int[] coins, int amount, int num) {
              if (amount < 0) return ; 
              if (amount == 0) {
                  res = Math.min(res, num);
                  return ;
              }
              for (int coin : coins) {
                  bfs(coins, amount - coin, num + 1);
              }
          }
      }
      
      // DP
      // subproblems: problem[i] = 1 + min(sub(i-coin1),sub(i-coin2),...)
      // dp array: f(n) = min(f(n-k), fpr k in [1,2,5]) + 1
      // dp equation
      class Solution {
          public int coinChange(int[] coins, int amount) {
              int max = amount + 1;
              int[] dp = new int[amount + 1];
              Arrays.fill(dp, max);
              dp[0] = 0;
              for (int i = 1; i <= amount; i++) {
                  for (int coin : coins) {
                      if (coin <= i) {
                          dp[i] = Math.min(dp[i], dp[i - coin] + 1);
                      }
                  }
              }
              return dp[amount] > amount ? -1 : dp[amount];
          }
      }
      
    • 198. House Robber

      You are a professional robber planning to rob houses along a street. Each house has a certain amount of money stashed, the only constraint stopping you from robbing each of them is that adjacent houses have security systems connected and it will automatically contact the police if two adjacent houses were broken into on the same night.

      Given an integer array nums representing the amount of money of each house, return the maximum amount of money you can rob tonight without alerting the police.

      Example 1:

      Input: nums = [1,2,3,1]
      Output: 4
      Explanation: Rob house 1 (money = 1) and then rob house 3 (money = 3).
      Total amount you can rob = 1 + 3 = 4.
      

      Example 2:

      Input: nums = [2,7,9,3,1]
      Output: 12
      Explanation: Rob house 1 (money = 2), rob house 3 (money = 9) and rob house 5 (money = 1).
      Total amount you can rob = 2 + 9 + 1 = 12.
      

      Constraints:

      • 1 <= nums.length <= 100
      • 0 <= nums[i] <= 400
      class Solution {
          public int rob(int[] nums) {
              if (nums.length == 1) return nums[0];
              nums[1] = Math.max(nums[0], nums[1]);
              for (int i = 2; i < nums.length; i++) {
                  nums[i] = Math.max(nums[i] + nums[i-2], nums[i-1]);
              }
              return nums[nums.length - 1];
          }
      }
      
      class Solution {
          public int rob(int[] nums) {
              if (nums.length == 1) return nums[0];
              int[][] dp = new int[nums.length][2];
              dp[0][0] = 0; // not rob
              dp[0][1] = nums[0]; // rob
              for (int i = 1; i < nums.length; i++) {
                  dp[i][0] = Math.max(dp[i-1][1], dp[i-1][0]);
                  dp[i][1] = dp[i-1][0] + nums[i];
              }
              return Math.max(dp[nums.length - 1][0], dp[nums.length - 1][1]);
          }
      }
      
  • 相关阅读:
    99%的人都理解错了HTTP中GET与POST的区别
    CSS3 Border-image
    Tween.js的使用示例
    HTML5的postMessage使用记要
    Vuejs——(2)Vue生命周期,数据,手动挂载,指令,过滤器
    nodejs ejs 请求路径和静态资源文件路径
    JS逗号运算符的用法详解
    toStirng()与Object.prototype.toString.call()方法浅谈
    正则表达式之 贪婪与非贪婪模式
    利用符号进行的类型转换,转换成数字类型 ~~
  • 原文地址:https://www.cnblogs.com/peng8098/p/algorithm10.html
Copyright © 2011-2022 走看看