原文链接:http://www.one2know.cn/nlp24/
- 准备
数据集:AIML数据集
下载数据集并用Notepad++打开,复制到txt文件中方便打开 - 代码实现
数据很少,训练轮次不多,结果不好,仅当示例
import numpy as np
import pandas as pd
with open('bot.txt','r') as content_file:
botdata = content_file.read()
Questions = []
Answers = []
for line in botdata.split('</pattern>'):
if '<pattern>' in line:
Quesn = line[line.find('<pattern>')+len('<pattern>'):]
Questions.append(Quesn.lower())
for line in botdata.split('</template>'):
if '<template>' in line:
Ans = line[line.find('<template>')+len('<template>'):]
Answers.append(Ans.lower())
QnAdata = pd.DataFrame(np.column_stack([Questions,Answers]),columns=['Questions','Answers'])
QnAdata['QnAcomb'] = QnAdata['Questions'] + ' ' + QnAdata['Answers']
print(QnAdata[:5])
import nltk
import collections
## 向量化
counter = collections.Counter()
for i in range(len(QnAdata)):
for word in nltk.word_tokenize(QnAdata.iloc[i][2]):
counter[word] += 1
word2idx = {w:(i+1) for i,(w,_) in enumerate(counter.most_common())}
idx2word = {v:k for k,v in word2idx.items()}
idx2word[0] = 'PAD'
vocab_size = len(word2idx) + 1
print('
Vocabulary size:',vocab_size)
def encode(sentence, maxlen,vocab_size):
indices = np.zeros((maxlen, vocab_size))
for i, w in enumerate(nltk.word_tokenize(sentence)):
if i == maxlen: break
indices[i, word2idx[w]] = 1
return indices
def decode(indices, calc_argmax=True):
if calc_argmax:
indices = np.argmax(indices, axis=-1)
return ' '.join(idx2word[x] for x in indices)
question_maxlen = 10
answer_maxlen = 20
def create_questions(question_maxlen,vocab_size):
question_idx = np.zeros(shape=(len(Questions),question_maxlen,vocab_size))
for q in range(len(Questions)):
question = encode(Questions[q],question_maxlen,vocab_size)
question_idx[i] = question
return question_idx
quesns_train = create_questions(question_maxlen=question_maxlen,vocab_size=vocab_size)
def create_answers(answer_maxlen,vocab_size):
answer_idx = np.zeros(shape=(len(Answers),answer_maxlen,vocab_size))
for q in range(len(Answers)):
answer = encode(Answers[q],answer_maxlen,vocab_size)
answer_idx[i] = answer
return answer_idx
answs_train = create_answers(answer_maxlen=answer_maxlen,vocab_size=vocab_size)
from keras.layers import Input,Dense,Dropout,Activation
from keras.models import Model
from keras.layers.recurrent import LSTM
from keras.layers.wrappers import Bidirectional
from keras.layers import RepeatVector,TimeDistributed,ActivityRegularization
n_hidden = 128
question_layer = Input(shape=(question_maxlen,vocab_size))
encoder_rnn = LSTM(n_hidden,dropout=0.2,recurrent_dropout=0.2)(question_layer)
# encoder_rnn = Bidirectional(LSTM(n_hidden,dropout=0.2,recurrent_dropout=0.2),merge_mode='concat')(question_layer)
# RNN的双向包装 向前和向后RNN的输出将合并
# merge_mode(合并模型)参数:{'sum', 'mul', 'concat', 'ave', None}
repeat_encode = RepeatVector(answer_maxlen)(encoder_rnn)
# 重复输入n次 shape加了一维 比如(a,b,c)=>(n,a,b,c)
dense_layer = TimeDistributed(Dense(vocab_size))(repeat_encode)
# TimeDistributed和Dense一起使用,
# 在静态形状中查找非特定维度,并用张量的相应动态形状代替它们
regularized_layer = ActivityRegularization(l2=1)(dense_layer)
# 对基于代价函数的输入活动应用更新的层
softmax_layer = Activation('softmax')(regularized_layer)
model = Model([question_layer],[softmax_layer])
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
print(model.summary())
# 模型训练
quesns_train_2 = quesns_train.astype('float32')
answs_train_2 = answs_train.astype('float32')
model.fit(quesns_train_2, answs_train_2,batch_size=32,epochs=30,validation_split=0.05)
# 模型预测
ans_pred = model.predict(quesns_train_2[0:3])
print(decode(ans_pred[0]))
print(decode(ans_pred[1]))