zoukankan      html  css  js  c++  java
  • 基于tiny4412的Linux内核移植(支持device tree)(三)

    作者信息

    作者: 彭东林

    邮箱:pengdonglin137@163.com

    QQ:405728433

    平台简介

    开发板:tiny4412ADK + S700 + 4GB Flash

    要移植的内核版本:Linux-4.4.0 (支持device tree)

    u-boot版本:友善之臂自带的 U-Boot 2010.12 (为支持uImage启动,做了少许改动)

    busybox版本:busybox 1.25

    交叉编译工具链: arm-none-linux-gnueabi-gcc

          (gcc version 4.8.3 20140320 (prerelease) (Sourcery CodeBench Lite 2014.05-29))

    注意

    继续上文。

    到目前为止,板子已经可以起来了,接下来就可以针对板子的情况移植驱动程序了。这个放在以后再做,下面是我折腾过程中得到的一些知识,分享一下。

    一、设备树反编译

    在内核目录下当我们执行make dtbs后,就会在arch/arm/boot/dts下生成一些.dtb文件,那这个文件里是什么东西呢?我们可以用dtc命令反编译这些dtb文件,这里的可执行程序dtc在Linux内核源码中已经提供了,具体路径是:scripts/dtc/,可以使用下面的命令从Linux源码中编译出这个工具:

    make CROSS_COMPILE=arm-none-linux-gnueabi- ARCH=arm scripts

     这样就会在scripts/dtc下生成可执行程序dtc。

    当然,如果没有Linux源码,也可以使用apt-get命令安装这个工具,命令如下:

    sudo apt-get install device-tree-compiler

     下面以exynos4412-tiny4412.dtb为例:

    命令:

    dtc -I dtb -O dts -o tiny4412.dts arch/arm/boot/dts/exynos4412-tiny4412.dtb

    然后就会生成反编译后的文件 tiny4412.dts,部分内容如下:

    /dts-v1/;

    / {
    #address-cells = <;0x1>;
    #size-cells = <;0x1>;
    interrupt-parent = <;0x1>;
    compatible = "friendlyarm,tiny4412", "samsung,exynos4412", "samsung,exynos4";
    model = "FriendlyARM TINY4412 board based on Exynos4412";

    chosen {
    stdout-path = "/serial@13800000";
    bootargs = "root=/dev/ram0 rw rootfstype=ext4 console=ttySAC0,115200 init=/linuxrc earlyprintk";
    };

    aliases {
    spi0 = "/spi@13920000";
    spi1 = "/spi@13930000";
    spi2 = "/spi@13940000";
    i2c0 = "/i2c@13860000";
    i2c1 = "/i2c@13870000";
    i2c2 = "/i2c@13880000";
    i2c3 = "/i2c@13890000";
    i2c4 = "/i2c@138A0000";
    i2c5 = "/i2c@138B0000";
    i2c6 = "/i2c@138C0000";
    i2c7 = "/i2c@138D0000";
    i2c8 = "/i2c@138E0000";
    csis0 = "/camera/csis@11880000";
    csis1 = "/camera/csis@11890000";
    fimc0 = "/camera/fimc@11800000";
    fimc1 = "/camera/fimc@11810000";
    fimc2 = "/camera/fimc@11820000";
    fimc3 = "/camera/fimc@11830000";
    serial0 = "/serial@13800000";
    serial1 = "/serial@13810000";
    serial2 = "/serial@13820000";
    serial3 = "/serial@13830000";
    pinctrl0 = "/pinctrl@11400000";
    pinctrl1 = "/pinctrl@11000000";
    pinctrl2 = "/pinctrl@03860000";
    pinctrl3 = "/pinctrl@106E0000";
    fimc-lite0 = "/camera/fimc-lite@12390000";
    fimc-lite1 = "/camera/fimc-lite@123A0000";
    mshc0 = "/mmc@12550000";
    };

    memory {
    device_type = "memory";
    reg = <0x40000000 0x40000000>;
    };

    clock-controller@03810000 {
    compatible = "samsung,exynos4210-audss-clock";
    reg = <0x3810000 0xc>;
    #clock-cells = <;0x1>;
    linux,phandle = <;0x2>;
    phandle = <;0x2>;
    };
    i2s@03830000 {
    这个方法对于学习设备树很有帮助。

    二、在u-boot打印信息

    在u-boot中很多文件中是通过debug(… …)来打印信息,默认情况下这些log是打印不出来的。这个函数的定义是在include/common.h中:

    #ifdef DEBUG
    #define debug(fmt,args...)    printf (fmt ,##args)
    #define debugX(level,fmt,args...) if (DEBUG>=level) printf(fmt,##args);
    #else
    #define debug(fmt,args...)
    #define debugX(level,fmt,args...)
    #endif /* DEBUG */

    所以可以在调用debug函数的C文件的最上面添加  #define DEBUG  即可。这个方法在Linux内核以及Android当中也很常用。

    三、打开Linux内核启动早期的log

    有时会遇到当在u-boot中执行完bootm后,打印出start kernel后串口就没有再输出任何信息了。此时就需要打开内核早期的log:

    make menuconfig

      Kernel hacking  --->

          [*] Kernel low-level debugging functions (read help!)

                 Kernel low-level debugging port (Use Samsung S3C UART 0 for low-level debug)

          [*] Early printk

    对于earlyprintk,还需要在bootargs中添加参数earlyprintk才能生效,有了上面这几个配置,会有下面几个宏生效:

    CONFIG_DEBUG_LL=y

    CONFIG_DEBUG_S3C_UART0=y

    CONFIG_DEBUG_LL_INCLUDE="debug/exynos.S"

    CONFIG_DEBUG_UNCOMPRESS=y
    CONFIG_UNCOMPRESS_INCLUDE="debug/uncompress.h"
    CONFIG_EARLY_PRINTK=y

    关于earlyprintk的解析在文件arch/arm/kernel/early_printk.c中:

       1: extern void printch(int);
       2: 
       3: static void early_write(const char *s, unsigned n)
       4: {
       5:     while (n-- >; 0) {
       6:         if (*s == '
    ')
       7:             printch('
    ');
       8:         printch(*s);
       9:         s++;
      10:     }
      11: }
      12:  
      13: static void early_console_write(struct console *con, const char *s, unsigned n)
      14: {
      15:     early_write(s, n);
      16: }
      17:  
      18: static struct console early_console_dev = {
      19:     .name =        "earlycon",
      20:     .write =    early_console_write,
      21:     .flags =    CON_PRINTBUFFER | CON_BOOT,
      22:     .index =    -1,
      23: };
      24: 
      25: static int __init setup_early_printk(char *buf)
      26: {
      27:     early_console = &;early_console_dev;
      28:     register_console(&;early_console_dev);
      29:     return 0;
      30: }
      31:  
      32: early_param("earlyprintk", setup_early_printk);

    其中printch都是通过汇编语言实现的。

    在arch/arm/Kconfig.debug中可以看到:

    config DEBUG_LL
        bool "Kernel low-level debugging functions (read help!)"
        depends on DEBUG_KERNEL
        help
          Say Y here to include definitions of printascii, printch, printhex
          in the kernel.  This is helpful if you are debugging code that
          executes before the console is initialized
    .

    config DEBUG_S3C_UART0
        depends on PLAT_SAMSUNG
        select DEBUG_EXYNOS_UART if ARCH_EXYNOS
        select DEBUG_S3C24XX_UART if ARCH_S3C24XX
        select DEBUG_S5PV210_UART if ARCH_S5PV210
        bool "Use Samsung S3C UART 0 for low-level debug"
        help
          Say Y here if you want the debug print routines to direct
          their output to UART 0.
    The port must have been initialised
          by the boot-loader before use.

    config DEBUG_LL_INCLUDE
        string
        ……
        default "debug/exynos.S" if DEBUG_EXYNOS_UART

    config EARLY_PRINTK
        bool "Early printk"
        depends on DEBUG_LL
        help
          Say Y here if you want to have an early console using the
          kernel low-level debugging functions. Add earlyprintk to your
          kernel parameters to enable this console.

    从上面的信息我们可以知道:

    • 在串口终端尚未注册时,内核定义了printascii、printch以及printhex用于调试;
    • early console使用的也是上面定义的函数,需要在传递给内核的参数中添加earlyprintk参数
    • Linux内核早期的print函数的输出串口要跟u-boot下使用的一致,即内核不再负责初始化了,让u-boot来做,所以二者一定要一致,否则那些print函数以及earlyprintk都没法输出信息;
    • 可以参考arch/arm/kernel/debug.S,printascii、printch以及printhex都是在这里定义的;
    • 在kernel进入C函数(start_kernel)后可以调用early_print来打印信息,它是在arch/arm/kernel/setup.c中定义的:
       1: void __init early_print(const char *str, ...)
       2: {
       3:     extern void printascii(const char *);
       4:     char buf[256];
       5:     va_list ap;
       6: 
       7:     va_start(ap, str);
       8:     vsnprintf(buf, sizeof(buf), str, ap);
       9:     va_end(ap);
      10:  
      11: #ifdef CONFIG_DEBUG_LL
      12:     printascii(buf);
      13: #endif
      14:     printk("%s", buf);
      15: }

    可以看到,early_print也会调用printascii和printk,意思是用early_print打印的信息可能会重复出现在终端上(printk会缓冲一部分,当bootconsole注册后,会将printk缓冲区中的内容输出)。

    上面所说的打印函数只能在内核自解压后的函数中才能使用,那么内核自解压过程中的信息是不是也可以打印呢?可以,内核自解压相关的文件在arch/arm/boot/compressed/下面,我们所熟知的:

    Uncompressing Linux... done, booting the kernel.

    就是这个目录下的代码打印出来的,具体代码如下:

    arch/arm/boot/compressed/misc.c

       1: void
       2: decompress_kernel(unsigned long output_start, unsigned long free_mem_ptr_p,
       3:         unsigned long free_mem_ptr_end_p,
       4:         int arch_id)
       5: {
       6:     ......
       7:     putstr("Uncompressing Linux...");
       8:     ret = do_decompress(input_data, input_data_end - input_data,
       9:                 output_data, error);
      10:     ......
      11:     putstr(" done, booting the kernel.
    ");
      12: }

     其中,putstr的定义如下:

       1: static void putstr(const char *ptr)
       2: {
       3:     char c;
       4: 
       5:     while ((c = *ptr++) != '') {
       6:         if (c == '
    ')
       7:             putc('
    ');
       8:         putc(c);
       9:     }
      10:  
      11:     flush();
      12: }

     putc是汇编实现的,arch/arm/boot/compressed/debug.S:

       1: #include CONFIG_DEBUG_LL_INCLUDE
       2:  
       3: ENTRY(putc)
       4:     addruart r1, r2, r3
       5:     waituart r3, r1
       6:     senduart r0, r1
       7:     busyuart r3, r1
       8:     mov     pc, lr
       9: ENDPROC(putc)
      10:  
      11:  

    其中addruart的实现因soc的不同而不同,对于exynos4412,它的实现是(arch/arm/include/debug/exynos.S):

       1: .macro addruart, rp, rv, tmp
       2:     mrc    p15, 0, 	mp, c0, c0, 0
       3:     and    	mp, 	mp, #0xf0
       4:     teq    	mp, #0xf0        @@ A15
       5:     ldreq    
    p, =EXYNOS5_PA_UART
       6:     movne    
    p, #EXYNOS4_PA_UART    @@ EXYNOS4
       7:     ldr    
    v, =S3C_VA_UART
       8: CONFIG_DEBUG_S3C_UART != 0
       9:     add    
    p, 
    p, #(0x10000 * CONFIG_DEBUG_S3C_UART)
      10:     add    
    v, 
    v, #(0x10000 * CONFIG_DEBUG_S3C_UART)
      11: if
      12: .endm

     这个函数的目的就是获得控制调试uart的寄存器的物理基地址(rp)和虚拟基地址(rv),这里也没有初始化uart的代码,所以必须跟u-boot使用的串口一致。

    四、在内核自解压时dump内存

    这是在调试设备树在内存中的镜像被自解压后的内核覆盖时发现的。下面是使用方法:

    • 首先需要按照上面的一节配置内核打开那几个宏
    • 修改arch/arm/boot/compressed/head.S,如下:
       1: diff --git a/arch/arm/boot/compressed/head.S b/arch/arm/boot/compressed/head.S
       2: index 06e983f..7ecde2e 100644
       3: --- a/arch/arm/boot/compressed/head.S
       4: +++ b/arch/arm/boot/compressed/head.S
       5: @@ -22,6 +22,8 @@
       6:   * 100% relocatable.  Any attempt to do so will result in a crash.
       7:   * Please select one of the following when turning on debugging.
       8:   */
       9: +#define DEBUG
      10: +
      11:  #ifdef DEBUG
      12:  
      13:  #if defined(CONFIG_DEBUG_ICEDCC)
      14: @@ -65,7 +67,7 @@
      15:          .endm
      16:  #else
      17:          .macro    loadsp,    rb, tmp
      18: -        addruart 
    b, 	mp
      19: +        addruart 
    b, 	mp, 	mp
      20:          .endm
      21:  #endif
      22:  #endif
      23: @@ -536,6 +538,24 @@ not_relocated:    mov    r0, #0
      24:   *   r7  = architecture ID
      25:   *   r8  = atags pointer
      26:   */
      27: +        stmfd    sp!, {r0-r3, r10-r12, lr}
      28: +        kputc    #'
    '
      29: +        kputc    #'a'
      30: +        kputc    #'t'
      31: +        kputc    #'a'
      32: +        kputc    #'g'
      33: +        kputc    #'s'
      34: +        kputc    #':'
      35: +        kputc    #' '
      36: +        kputc    #'0'
      37: +        kputc    #'x'
      38: +        kphex    r8, 8        /* atags pointer */
      39: +        kputc    #'
    '
      40: +        mov    r0, r8
      41: +        bl    memdump        /* dump 256 bytes at start of kernel */
      42: +        kputc    #'
    '
      43: +        ldmfd    sp!, {r0-r3, r10-r12, lr}
      44: +
      45:          mov    r0, r4
      46:          mov    r1, sp            @ malloc space above stack
      47:          add    r2, sp, #0x10000    @ 64k max
      48: @@ -546,6 +566,26 @@ not_relocated:    mov    r0, #0
      49:          mov    r1, r7            @ restore architecture number
      50:          mov    r2, r8            @ restore atags pointer
      51:  
      52: +        stmfd    sp!, {r0-r3, r10-r12, lr}
      53: +        kputc    #'
    '
      54: +        kputc    #'
    '
      55: +        kputc    #'a'
      56: +        kputc    #'t'
      57: +        kputc    #'a'
      58: +        kputc    #'g'
      59: +        kputc    #'s'
      60: +        kputc    #':'
      61: +        kputc    #' '
      62: +        kputc    #'0'
      63: +        kputc    #'x'
      64: +        kphex    r8, 8        /* atags pointer */
      65: +        kputc    #'
    '
      66: +        mov    r0, r8
      67: +        bl    memdump        /* dump 256 bytes at start of kernel */
      68: +        kputc    #'
    '
      69: +        ldmfd    sp!, {r0-r3, r10-r12, lr}
      70: +
      71: +
      72:  #ifdef CONFIG_ARM_VIRT_EXT
      73:          mrs    r0, spsr        @ Get saved CPU boot mode
      74:          and    r0, r0, #MODE_MASK

     可以使用kputc打印出一个字符,kphex用于打印一个指定位宽的十六进制数,将需要dump的内粗地址存放入r0,然后调用memdump即可,memdump会dump出256B的内容。u-boot在跳转到内核的时候传递三个参数,分别给了r0、r1、r2,在没有设备树之前,传给r0,r1和r2的分别是0,machid以及u-boot传给Linux内核参数的地址(如0x40000100),在有了设备树之后,传给r0的是0,传给r1的值无所谓,传给r2的是设备树镜像在内存中的地址。效果如下:

    U-Boot 2010.12-00000-gb391276-dirty (Jan 17 2016 - 06:03:22) for TINY4412
     
     
    CPU:    S5PC220 [Samsung SOC on SMP Platform Base on ARM CortexA9]
            APLL = 1400MHz, MPLL = 800MHz
     
    Board:  TINY4412
    DRAM:   1023 MiB
     
    vdd_arm: 1.2
    vdd_int: 1.0
    vdd_mif: 1.1
     
    BL1 version:  N/A (TrustZone Enabled BSP)
     
     
    Checking Boot Mode ... SDMMC
    REVISION: 1.1
    MMC Device 0: 3803 MB
    MMC Device 1: 3728 MB
    MMC Device 2: N/A
    *** Warning - using default environment
     
    Net:    No ethernet found.
    Hit any key to stop autoboot:  0 
    TINY4412 # 
    TINY4412 # dnw 0x40000000
    OTG cable Connected!
    Now, Waiting for DNW to transmit data
    Download Done!! Download Address: 0x40000000, Download Filesize:0x43bde8
    Checksum is being calculated.....
    Checksum O.K.
    TINY4412 # dnw  0x41000000
    OTG cable Connected!
    Now, Waiting for DNW to transmit data
    Download Done!! Download Address: 0x41000000, Download Filesize:0x27752e
    Checksum is being calculated...
    Checksum O.K.
    TINY4412 # dnw 0x42000000
    OTG cable Connected!
    Now, Waiting for DNW to transmit data
    Download Done!! Download Address: 0x42000000, Download Filesize:0xa53a
    Checksum is being calculated.
    Checksum O.K.
    TINY4412 # bootm 0x40000000 0x41000000 0x42000000
    ## Booting kernel from Legacy Image at 40000000 ...
       Image Name:   Linux-4.4.0-gbd49c0f-dirty
       Image Type:   ARM Linux Kernel Image (uncompressed)
       Data Size:    4439464 Bytes = 4335 KiB
       Load Address: 40008000
       Entry Point:  40008000
       Verifying Checksum ... OK
    ## Loading init Ramdisk from Legacy Image at 41000000 ...
       Image Name:   ramdisk
       Image Type:   ARM Linux RAMDisk Image (gzip compressed)
       Data Size:    2585838 Bytes = 2525 KiB
       Load Address: 00000000
       Entry Point:  00000000
       Verifying Checksum ... OK
    ## Flattened Device Tree blob at 42000000
       Booting using the fdt blob at 0x42000000
       Loading Kernel Image ... OK
    OK
    ## Loading init Ramdisk from Legacy Image at 41000000 ...
       Image Name:   ramdisk
       Image Type:   ARM Linux RAMDisk Image (gzip compressed)
       Data Size:    2585838 Bytes = 2525 KiB
       Load Address: 00000000
       Entry Point:  00000000
       Verifying Checksum ... OK
       Loading Ramdisk to 43a84000, end 43cfb4ee ... OK
       Loading Device Tree to 413f2000, end 413ff539 ... OK
     
    Starting kernel ...
     
     
    atags: 0x413F2000
    413F2000: EDFE0DD0 3AD50000 48000000 849E0000  28000000 11000000 10000000 00000000
    413F2020: 22070000 3C9E0000 00000000 0040A843  00000000 EF742700 00000000 00000000
    413F2040: 00000000 00000000 01000000 00000000  03000000 04000000 00000000 01000000
    413F2060: 03000000 04000000 0F000000 01000000  03000000 04000000 1B000000 01000000
    413F2080: 03000000 38000000 2C000000 65697266  796C646E 2C6D7261 796E6974 32313434
    413F20A0: 6D617300 676E7573 7978652C 34736F6E  00323134 736D6173 2C676E75 6E797865
    413F20C0: 0034736F 03000000 2F000000 37000000  65697246 796C646E 204D5241 594E4954
    413F20E0: 32313434 616F6220 62206472 64657361  206E6F20 6E797845 3434736F 00003231
     
    Uncompressing Linux... done, booting the kernel.
     
     
    atags: 0x413F2000
    413F2000: EDFE0DD0 3AD50000 48000000 849E0000  28000000 11000000 10000000 00000000
    413F2020: 22070000 3C9E0000 00000000 0040A843  00000000 EF742700 00000000 00000000
    413F2040: 00000000 00000000 01000000 00000000  03000000 04000000 00000000 01000000
    413F2060: 03000000 04000000 0F000000 01000000  03000000 04000000 1B000000 01000000
    413F2080: 03000000 38000000 2C000000 65697266  796C646E 2C6D7261 796E6974 32313434
    413F20A0: 6D617300 676E7573 7978652C 34736F6E  00323134 736D6173 2C676E75 6E797865
    413F20C0: 0034736F 03000000 2F000000 37000000  65697246 796C646E 204D5241 594E4954
    413F20E0: 32313434 616F6220 62206472 64657361  206E6F20 6E797845 3434736F 00003231
     
    [    0.000000] Booting Linux on physical CPU 0xa00
    [    0.000000] Linux version 4.4.0-gbd49c0f-dirty (root@ubuntu) (gcc version 4.8.3 20140320 (prerelease) (Sourcery CodeBench Lite 2014.05-29) ) #25 SMP PREEMPT Tue Jan 19 05:50:47 PST 2016
    [    0.000000] CPU: ARMv7 Processor [413fc090] revision 0 (ARMv7), cr=10c5387d
    [    0.000000] CPU: PIPT / VIPT nonaliasing data cache, VIPT aliasing instruction cache
    [    0.000000] Machine model: FriendlyARM TINY4412 board based on Exynos4412
    [    0.000000] bootconsole [earlycon0] enabled
    [    0.000000] cma: Reserved 64 MiB at 0x7bc00000
    [    0.000000] Memory policy: Data cache writealloc
    [    0.000000] Samsung CPU ID: 0xe4412011
    [    0.000000] PERCPU: Embedded 12 pages/cpu @ef79b000 s18816 r8192 d22144 u49152
    [    0.000000] Built 1 zonelists in Zone order, mobility grouping on.  Total pages: 260352
    [    0.000000] Kernel command line: root=/dev/ram0 rw rootfstype=ext4 console=ttySAC0,115200 init=/linuxrc earlyprintk
    [    0.000000] PID hash table entries: 4096 (order: 2, 16384 bytes)
    [    0.000000] Dentry cache hash table entries: 131072 (order: 7, 524288 bytes)
    [    0.000000] Inode-cache hash table entries: 65536 (order: 6, 262144 bytes)
    [    0.000000] Memory: 960824K/1047552K available (5867K kernel code, 293K rwdata, 2288K rodata, 440K init, 315K bss, 21192K reserved, 65536K cma-reserved, 195584K highmem)
    [    0.000000] Virtual kernel memory layout:
    [    0.000000]     vector  : 0xffff0000 - 0xffff1000   (   4 kB)
    [    0.000000]     fixmap  : 0xffc00000 - 0xfff00000   (3072 kB)
    [    0.000000]     vmalloc : 0xf0800000 - 0xff800000   ( 240 MB)
    [    0.000000]     lowmem  : 0xc0000000 - 0xf0000000   ( 768 MB)
    [    0.000000]     pkmap   : 0xbfe00000 - 0xc0000000   (   2 MB)
    [    0.000000]     modules : 0xbf000000 - 0xbfe00000   (  14 MB)
    [    0.000000]       .text : 0xc0008000 - 0xc07ff200   (8157 kB)
    [    0.000000]       .init : 0xc0800000 - 0xc086e000   ( 440 kB)
    [    0.000000]       .data : 0xc086e000 - 0xc08b7418   ( 294 kB)
    [    0.000000]        .bss : 0xc08ba000 - 0xc0908d28   ( 316 kB)

    可以看到 Uncompressing Linux... done, booting the kernel.前后就是dump出的设备树的内容(大小端 可能有些问题).

    五、CONFIG_ARM_APPENDED_DTB 

    这个宏是Linux内核中的,它的作用是支持zImage+dtb的启动方式。为什么要有种方式呢?因为很多厂家都有自己的bootloader,但是这些bootloader并不都一定支持设备树,为了实现支持设备树启动,就引入了这种启动方式,即将编译出的zImage和编译出的设备树镜像文件拼成一个新的镜像,在内核的自解压代码中会识别到,不会出现自解压时导致设备树被覆盖,具体实现如下(arch/arm/boot/compressed/head.S)

    mov    r5, #0            @ init dtb size to 0
    #ifdef CONFIG_ARM_APPENDED_DTB
    /*
    *   r0  = delta
    *   r2  = BSS start
    *   r3  = BSS end
    *   r4  = final kernel address (possibly with LSB set)
    *   r5  = appended dtb size (still unknown)
    *   r6  = _edata
    *   r7  = architecture ID
    *   r8  = atags/device tree pointer
    *   r9  = size of decompressed image
    *   r10 = end of this image, including  bss/stack/malloc space if non XIP
    *   r11 = GOT start
    *   r12 = GOT end
    *   sp  = stack pointer
    *
    * if there are device trees (dtb) appended to zImage, advance r10 so that the
    * dtb data will get relocated along with the kernel if necessary.
    */
     
    ldr    lr, [r6, #0]
    #ifndef __ARMEB__
    ldr    r1, =0xedfe0dd0        @ sig is 0xd00dfeed big endian
    #else
    ldr    r1, =0xd00dfeed
    #endif
    cmp    lr, r1
    bne    dtb_check_done        @ not found
     
    #ifdef CONFIG_ARM_ATAG_DTB_COMPAT
    /*
     * OK... Let's do some funky business here.
     * If we do have a DTB appended to zImage, and we do have
     * an ATAG list around, we want the later to be translated
     * and folded into the former here. No GOT fixup has occurred
     * yet, but none of the code we're about to call uses any
     * global variable.
    */
     
    /* Get the initial DTB size */
    ldr    r5, [r6, #4]
    #ifndef __ARMEB__
    /* convert to little endian */
    eor    r1, r5, r5, ror #16
    bic    r1, r1, #0x00ff0000
    mov    r5, r5, ror #8
    eor    r5, r5, r1, lsr #8
    #endif
    /* 50% DTB growth should be good enough */
    add    r5, r5, r5, lsr #1
    /* preserve 64-bit alignment */
    add    r5, r5, #7
    bic    r5, r5, #7
    /* clamp to 32KB min and 1MB max */
    cmp    r5, #(1 <;< 15)
    movlo    r5, #(1 <;< 15)
    cmp    r5, #(1 <;< 20)
    movhi    r5, #(1 <;< 20)
    /* temporarily relocate the stack past the DTB work space */
    add    sp, sp, r5
     
    stmfd    sp!, {r0-r3, ip, lr}
    mov    r0, r8
    mov    r1, r6
    mov    r2, r5
    bl    atags_to_fdt
     
    /*
     * If returned value is 1, there is no ATAG at the location
     * pointed by r8.  Try the typical 0x100 offset from start
     * of RAM and hope for the best.
     */
    cmp    r0, #1
    sub    r0, r4, #TEXT_OFFSET
    bic    r0, r0, #1
    add    r0, r0, #0x100
    mov    r1, r6
    mov    r2, r5
    bleq    atags_to_fdt
     
    ldmfd    sp!, {r0-r3, ip, lr}
    sub    sp, sp, r5
    #endif
     
    mov    r8, r6            @ use the appended device tree
     
    /*
     * Make sure that the DTB doesn't end up in the final
     * kernel's .bss area. To do so, we adjust the decompressed
     * kernel size to compensate if that .bss size is larger
     * than the relocated code.
     */
    ldr    r5, =_kernel_bss_size
    adr    r1, wont_overwrite
    sub    r1, r6, r1
    subs    r1, r5, r1
    addhi    r9, r9, r1
     
    /* Get the current DTB size */
    ldr    r5, [r6, #4]
    #ifndef __ARMEB__
    /* convert r5 (dtb size) to little endian */
    eor    r1, r5, r5, ror #16
    bic    r1, r1, #0x00ff0000
    mov    r5, r5, ror #8
    eor    r5, r5, r1, lsr #8
    #endif
     
    /* preserve 64-bit alignment */
    add    r5, r5, #7
    bic    r5, r5, #7
     
    /* relocate some pointers past the appended dtb */
    add    r6, r6, r5
    add    r10, r10, r5
    add    sp, sp, r5
    dtb_check_done:
    #endif

    拼接方法:

    cat zImage dts/exynos4412-tiny4412.dtb > dtbImage

    也可以修改内核编译系统,在编译完成后自动实现拼接,可以参考下面的博文实现:

    http://www.cnblogs.com/pengdonglin137/p/5134364.html

    下面是使用dtbImage启动的方法:

    1、修改设备树 arch/arm/boot/dts/exynos4412-tiny4412.dts

    diff --git a/arch/arm/boot/dts/exynos4412-tiny4412.dts b/arch/arm/boot/dts/exynos4412-tiny4412.dts
    index 4840bbd..1e33ede 100644
    --- a/arch/arm/boot/dts/exynos4412-tiny4412.dts
    +++ b/arch/arm/boot/dts/exynos4412-tiny4412.dts
    @@ -21,6 +21,7 @@
     
            chosen {
                    stdout-path = &;serial_0;
    +               bootargs = "root=/dev/ram0 rw rootfstype=ext4 ramdisk=8192 initrd=0x41000000,8M console=ttySAC0,115200 init=/linuxrc mem=1024M"
            };
    
    
    
            memory {
    @@ -78,7 +79,7 @@
            bus-width = <;4>;
            pinctrl-0 = <;&sd2_clk &sd2_cmd &sd2_cd &sd2_bus4>;
            pinctrl-names = "default";
    -       status = "okay";
    +       status = "disabled";
     };
     
     &;serial_0 {

    2、编译设备树 make dtbs,将生成的.dtb跟zImag拼接起来生成dtbImage

    3、使用ramdisk启动,目前不能使用ramdisk.img,还不知道为什么。

    4、启动开发板,进入u-boot命令行模式,执行如下命令:

    在u-boot里执行下载dtbImage的命令: dnw 0x40008000

    在开发机上执行: dnw dtbImage

    在u-boot里执行下载ramdisk的命令:dnw 0x41000000

    在开发机上执行: dnw ramdisk

    启动内核: bootm 0x40008000   (u-boot不识别未压缩的ramdisk,ramdisk的地址在bootargs中指定为0x41000000,而且上面我们已经把ramdisk下载到0x41000000了)

    下面是完整的log:

    U-Boot 2010.12-00000-gb391276-dirty (Jan 17 2016 - 06:03:22) for TINY4412
     
     
    CPU:    S5PC220 [Samsung SOC on SMP Platform Base on ARM CortexA9]
            APLL = 1400MHz, MPLL = 800MHz
     
    Board:  TINY4412
    DRAM:   1023 MiB
     
    vdd_arm: 1.2
    vdd_int: 1.0
    vdd_mif: 1.1
     
    BL1 version:  N/A (TrustZone Enabled BSP)
     
     
    Checking Boot Mode ... SDMMC
    REVISION: 1.1
    MMC Device 0: 3803 MB
    MMC Device 1: 3728 MB
    MMC Device 2: N/A
    *** Warning - using default environment
     
    Net:    No ethernet found.
    Hit any key to stop autoboot:  0 
    TINY4412 # dnw 0x40008000
    OTG cable Connected!
    Now, Waiting for DNW to transmit data
    Download Done!! Download Address: 0x40008000, Download Filesize:0x446302
    Checksum is being calculated.....
    Checksum O.K.
    TINY4412 # dnw 0x41000000
    OTG cable Connected!
    Now, Waiting for DNW to transmit data
    Download Done!! Download Address: 0x41000000, Download Filesize:0x800000
    Checksum is being calculated.........
    Checksum O.K.
    TINY4412 # bootm 0x40008000
    Boot with zImage
     
    Starting kernel ...
     
     
    atags: 0x40CF68E8
    40CF68E8: EDFE0DD0 72A50000 38000000 749E0000  28000000 11000000 10000000 00000000
    40CF6908: FE060000 3C9E0000 00000000 00000000  00000000 00000000 01000000 00000000
    40CF6928: 03000000 04000000 00000000 01000000  03000000 04000000 0F000000 01000000
    40CF6948: 03000000 04000000 1B000000 01000000  03000000 38000000 2C000000 65697266
    40CF6968: 796C646E 2C6D7261 796E6974 32313434  6D617300 676E7573 7978652C 34736F6E
    40CF6988: 00323134 736D6173 2C676E75 6E797865  0034736F 03000000 2F000000 37000000
    40CF69A8: 65697246 796C646E 204D5241 594E4954  32313434 616F6220 62206472 64657361
    40CF69C8: 206E6F20 6E797845 3434736F 00003231  01000000 736F6863 00006E65 03000000
     
    Uncompressing Linux... done, booting the kernel.
     
     
    atags: 0x40CF68E8
    40CF68E8: EDFE0DD0 72A50000 38000000 749E0000  28000000 11000000 10000000 00000000
    40CF6908: FE060000 3C9E0000 00000000 00000000  00000000 00000000 01000000 00000000
    40CF6928: 03000000 04000000 00000000 01000000  03000000 04000000 0F000000 01000000
    40CF6948: 03000000 04000000 1B000000 01000000  03000000 38000000 2C000000 65697266
    40CF6968: 796C646E 2C6D7261 796E6974 32313434  6D617300 676E7573 7978652C 34736F6E
    40CF6988: 00323134 736D6173 2C676E75 6E797865  0034736F 03000000 2F000000 37000000
    40CF69A8: 65697246 796C646E 204D5241 594E4954  32313434 616F6220 62206472 64657361
    40CF69C8: 206E6F20 6E797845 3434736F 00003231  01000000 736F6863 00006E65 03000000
     
    [    0.000000] Booting Linux on physical CPU 0xa00
    [    0.000000] Linux version 4.4.0-gbd49c0f-dirty (root@ubuntu) (gcc version 4.8.3 20140320 (prerelease) (Sourcery CodeBench Lite 2014.05-29) ) #25 SMP PREEMPT Tue Jan 19 05:50:47 PST 2016
    [    0.000000] CPU: ARMv7 Processor [413fc090] revision 0 (ARMv7), cr=10c5387d
    [    0.000000] CPU: PIPT / VIPT nonaliasing data cache, VIPT aliasing instruction cache
    [    0.000000] Machine model: FriendlyARM TINY4412 board based on Exynos4412
    [    0.000000] cma: Reserved 64 MiB at 0x7c000000
    [    0.000000] Memory policy: Data cache writealloc
    [    0.000000] Samsung CPU ID: 0xe4412011
    [    0.000000] PERCPU: Embedded 12 pages/cpu @ef79b000 s18816 r8192 d22144 u49152
    [    0.000000] Built 1 zonelists in Zone order, mobility grouping on.  Total pages: 260608
    [    0.000000] Kernel command line: root=/dev/ram0 rw rootfstype=ext4 ramdisk=8192 initrd=0x41000000,8M console=ttySAC0,115200 init=/linuxrc mem=1024M
    [    0.000000] PID hash table entries: 4096 (order: 2, 16384 bytes)
    [    0.000000] Dentry cache hash table entries: 131072 (order: 7, 524288 bytes)
    [    0.000000] Inode-cache hash table entries: 65536 (order: 6, 262144 bytes)
    [    0.000000] Memory: 956196K/1048576K available (5867K kernel code, 293K rwdata, 2288K rodata, 440K init, 315K bss, 26844K reserved, 65536K cma-reserved, 196608K highmem)
    [    0.000000] Virtual kernel memory layout:
    [    0.000000]     vector  : 0xffff0000 - 0xffff1000   (   4 kB)
    [    0.000000]     fixmap  : 0xffc00000 - 0xfff00000   (3072 kB)
    [    0.000000]     vmalloc : 0xf0800000 - 0xff800000   ( 240 MB)
    [    0.000000]     lowmem  : 0xc0000000 - 0xf0000000   ( 768 MB)
    [    0.000000]     pkmap   : 0xbfe00000 - 0xc0000000   (   2 MB)
    [    0.000000]     modules : 0xbf000000 - 0xbfe00000   (  14 MB)
    [    0.000000]       .text : 0xc0008000 - 0xc07ff200   (8157 kB)
    [    0.000000]       .init : 0xc0800000 - 0xc086e000   ( 440 kB)
    [    0.000000]       .data : 0xc086e000 - 0xc08b7418   ( 294 kB)
    [    0.000000]        .bss : 0xc08ba000 - 0xc0908d28   ( 316 kB)
    [    0.000000] SLUB: HWalign=64, Order=0-3, MinObjects=0, CPUs=4, Nodes=1
    [    0.000000] Preemptible hierarchical RCU implementation.
    [    0.000000]  Build-time adjustment of leaf fanout to 32.
    [    0.000000]  RCU restricting CPUs from NR_CPUS=8 to nr_cpu_ids=4.
    [    0.000000] RCU: Adjusting geometry for rcu_fanout_leaf=32, nr_cpu_ids=4
    [    0.000000] NR_IRQS:16 nr_irqs:16 16
    [    0.000000] GIC physical location is 0x10490000
    [    0.000000] L2C: platform modifies aux control register: 0x02070000 ->; 0x3e470001
    [    0.000000] L2C: platform provided aux values permit register corruption.
    [    0.000000] L2C: DT/platform modifies aux control register: 0x02070000 ->; 0x3e470001
    [    0.000000] L2C-310 enabling early BRESP for Cortex-A9
    [    0.000000] L2C-310: enabling full line of zeros but not enabled in Cortex-A9
    [    0.000000] L2C-310 dynamic clock gating enabled, standby mode enabled
    [    0.000000] L2C-310 cache controller enabled, 16 ways, 1024 kB
    [    0.000000] L2C-310: CACHE_ID 0x4100c4c8, AUX_CTRL 0x4e470001
    [    0.000000] Exynos4x12 clocks: sclk_apll = 466666667, sclk_mpll = 800000000
    [    0.000000]  sclk_epll = 96000000, sclk_vpll = 108000000, arm_clk = 1400000000
    [    0.000000] Switching to timer-based delay loop, resolution 41ns
    [    0.000000] clocksource: mct-frc: mask: 0xffffffff max_cycles: 0xffffffff, max_idle_ns: 79635851949 ns
    [    0.000003] sched_clock: 32 bits at 24MHz, resolution 41ns, wraps every 89478484971ns
    [    0.000122] Console: colour dummy device 80x30
    [    0.000135] Calibrating delay loop (skipped), value calculated using timer frequency.. 48.00 BogoMIPS (lpj=120000)
    [    0.000144] pid_max: default: 32768 minimum: 301
    [    0.000209] Mount-cache hash table entries: 2048 (order: 1, 8192 bytes)
    [    0.000217] Mountpoint-cache hash table entries: 2048 (order: 1, 8192 bytes)
    [    0.000586] CPU: Testing write buffer coherency: ok
    [    0.000772] CPU0: thread -1, cpu 0, socket 10, mpidr 80000a00
    [    0.000999] Setting up static identity map for 0x400082c0 - 0x40008318
    [    0.045048] CPU1: thread -1, cpu 1, socket 10, mpidr 80000a01
    [    0.060041] CPU2: thread -1, cpu 2, socket 10, mpidr 80000a02
    [    0.075042] CPU3: thread -1, cpu 3, socket 10, mpidr 80000a03
    [    0.075082] Brought up 4 CPUs
    [    0.075096] SMP: Total of 4 processors activated (192.00 BogoMIPS).
    [    0.075101] CPU: All CPU(s) started in SVC mode.
    [    0.075611] devtmpfs: initialized
    [    0.084566] VFP support v0.3: implementor 41 architecture 3 part 30 variant 9 rev 4
    [    0.084839] lcd0-power-domain@10023C80 has as child subdomain: tv-power-domain@10023C20.
    [    0.085225] clocksource: jiffies: mask: 0xffffffff max_cycles: 0xffffffff, max_idle_ns: 9556302231375000 ns
    [    0.087164] pinctrl core: initialized pinctrl subsystem
    [    0.087929] NET: Registered protocol family 16
    [    0.089226] DMA: preallocated 256 KiB pool for atomic coherent allocations
    [    0.105005] cpuidle: using governor ladder
    [    0.120000] cpuidle: using governor menu
    [    0.120747] exynos-audss-clk 3810000.clock-controller: setup completed
    [    0.157138] SCSI subsystem initialized
    [    0.157506] usbcore: registered new interface driver usbfs
    [    0.157580] usbcore: registered new interface driver hub
    [    0.157660] usbcore: registered new device driver usb
    [    0.158780] Advanced Linux Sound Architecture Driver Initialized.
    [    0.159857] clocksource: Switched to clocksource mct-frc
    [    0.169153] missing cooling_device property
    [    0.169163] failed to build thermal zone cpu-thermal: -2
    [    0.169260] NET: Registered protocol family 2
    [    0.169627] TCP established hash table entries: 8192 (order: 3, 32768 bytes)
    [    0.169686] TCP bind hash table entries: 8192 (order: 5, 163840 bytes)
    [    0.169803] TCP: Hash tables configured (established 8192 bind 8192)
    [    0.169921] UDP hash table entries: 512 (order: 2, 24576 bytes)
    [    0.169950] UDP-Lite hash table entries: 512 (order: 2, 24576 bytes)
    [    0.170092] NET: Registered protocol family 1
    [    0.170297] RPC: Registered named UNIX socket transport module.
    [    0.170305] RPC: Registered udp transport module.
    [    0.170310] RPC: Registered tcp transport module.
    [    0.170315] RPC: Registered tcp NFSv4.1 backchannel transport module.
    [    0.170461] Trying to unpack rootfs image as initramfs...
    [    0.170628] rootfs image is not initramfs (junk in compressed archive); looks like an initrd
    [    0.193515] Freeing initrd memory: 8192K (c1000000 - c1800000)
    [    0.194996] futex hash table entries: 1024 (order: 4, 65536 bytes)
    [    0.204233] romfs: ROMFS MTD (C) 2007 Red Hat, Inc.
    [    0.204924] bounce: pool size: 64 pages
    [    0.204936] io scheduler noop registered
    [    0.204945] io scheduler deadline registered
    [    0.205116] io scheduler cfq registered (default)
    [    0.209955] dma-pl330 12680000.pdma: Loaded driver for PL330 DMAC-141330
    [    0.209967] dma-pl330 12680000.pdma:         DBUFF-32x4bytes Num_Chans-8 Num_Peri-32 Num_Events-32
    [    0.213022] dma-pl330 12690000.pdma: Loaded driver for PL330 DMAC-141330
    [    0.213032] dma-pl330 12690000.pdma:         DBUFF-32x4bytes Num_Chans-8 Num_Peri-32 Num_Events-32
    [    0.213909] dma-pl330 12850000.mdma: Loaded driver for PL330 DMAC-141330
    [    0.213919] dma-pl330 12850000.mdma:         DBUFF-64x8bytes Num_Chans-8 Num_Peri-1 Num_Events-32
    [    0.271176] Serial: 8250/16550 driver, 4 ports, IRQ sharing disabled
    [    0.272413] 13800000.serial: ttySAC0 at MMIO 0x13800000 (irq = 44, base_baud = 0) is a S3C6400/10
    [    0.908554] console [ttySAC0] enabled
    [    0.912530] 13810000.serial: ttySAC1 at MMIO 0x13810000 (irq = 45, base_baud = 0) is a S3C6400/10
    [    0.921327] 13820000.serial: ttySAC2 at MMIO 0x13820000 (irq = 46, base_baud = 0) is a S3C6400/10
    [    0.930171] 13830000.serial: ttySAC3 at MMIO 0x13830000 (irq = 47, base_baud = 0) is a S3C6400/10
    [    0.939720] [drm] Initialized drm 1.1.0 20060810
    [    0.953371] brd: module loaded
    [    0.958359] loop: module loaded
    [    0.959171] usbcore: registered new interface driver r8152
    [    0.959302] usbcore: registered new interface driver asix
    [    0.960434] usbcore: registered new interface driver ax88179_178a
    [    0.966498] usbcore: registered new interface driver cdc_ether
    [    0.972325] usbcore: registered new interface driver dm9601
    [    0.977884] usbcore: registered new interface driver smsc75xx
    [    0.983611] usbcore: registered new interface driver smsc95xx
    [    0.989325] usbcore: registered new interface driver net1080
    [    0.994965] usbcore: registered new interface driver cdc_subset
    [    1.000873] usbcore: registered new interface driver zaurus
    [    1.006454] usbcore: registered new interface driver cdc_ncm
    [    1.012397] ehci_hcd: USB 2.0 'Enhanced' Host Controller (EHCI) Driver
    [    1.018528] ehci-exynos: EHCI EXYNOS driver
    [    1.022808] ohci_hcd: USB 1.1 'Open' Host Controller (OHCI) Driver
    [    1.028850] ohci-exynos: OHCI EXYNOS driver
    [    1.033363] usbcore: registered new interface driver usb-storage
    [    1.039544] mousedev: PS/2 mouse device common for all mice
    [    1.045326] s3c-rtc 10070000.rtc: failed to find rtc source clock
    [    1.050645] s3c-rtc: probe of 10070000.rtc failed with error -2
    [    1.056739] i2c /dev entries driver
    [    1.062046] device-mapper: ioctl: 4.34.0-ioctl (2015-10-28) initialised: dm-devel@redhat.com
    [    1.069226] sdhci: Secure Digital Host Controller Interface driver
    [    1.074585] sdhci: Copyright(c) Pierre Ossman
    [    1.079056] Synopsys Designware Multimedia Card Interface Driver
    [    1.086865] usbcore: registered new interface driver usbhid
    [    1.090471] usbhid: USB HID core driver
    [    1.097222] NET: Registered protocol family 10
    [    1.099233] sit: IPv6 over IPv4 tunneling driver
    [    1.103848] NET: Registered protocol family 17
    [    1.107765] NET: Registered protocol family 15
    [    1.112340] Registering SWP/SWPB emulation handler
    [    1.118177] hctosys: unable to open rtc device (rtc0)
    [    1.134172] ALSA device list:
    [    1.134208]   No soundcards found.
    [    1.134917] RAMDISK: ext2 filesystem found at block 0
    [    1.134972] RAMDISK: Loading 8192KiB [1 disk] into ram disk... done.
    [    1.262918] EXT4-fs (ram0): mounted filesystem with red data mode. Opts: (null)
    [    1.263014] VFS: Mounted root (ext4 filesystem) on device 1:0.
    [    1.263132] devtmpfs: mounted
    [    1.263411] Freeing unused kernel memory: 440K (c0800000 - c086e000)
     
    Please press Enter to activate this console. 
    [root@tiny4412 ]# 
    [root@tiny4412 ]# 
  • 相关阅读:
    Java之正則表達式【使用语法】
    2015年创业中遇到的技术问题:71-80
    2015年创业中遇到的技术问题:71-80
    Kinect小小玩偶游戏----小小潜水员
    微信开发学习日记(三):6点经验
    微信开发学习日记(二):3个案例
    2015年创业中遇到的技术问题:61-70
    2015年创业中遇到的技术问题:61-70
    2次创业经验谈(想创业想做事的人不要错过)
    Kinect舒适区范围--UE4 的Blueprint测试范例
  • 原文地址:https://www.cnblogs.com/pengdonglin137/p/5146791.html
Copyright © 2011-2022 走看看