zoukankan      html  css  js  c++  java
  • 针对专业人员的 TensorFlow 2.0 入门

    将 Tensorflow 导入您的程序:

    from __future__ import absolute_import, division, print_function, unicode_literals
    
    import tensorflow as tf
    
    from tensorflow.keras.layers import Dense, Flatten, Conv2D
    from tensorflow.keras import Model
    

    加载并准备 MNIST 数据集。

    mnist = tf.keras.datasets.mnist
    
    (x_train, y_train), (x_test, y_test) = mnist.load_data()
    x_train, x_test = x_train / 255.0, x_test / 255.0
    
    # Add a channels dimension
    x_train = x_train[..., tf.newaxis]
    x_test = x_test[..., tf.newaxis]
    

    使用tf.data来将数据集切分为 batch 以及混淆数据集:

    train_ds = tf.data.Dataset.from_tensor_slices(
        (x_train, y_train)).shuffle(10000).batch(32)
    test_ds = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32)
    

    使用 Keras 模型子类化(model subclassing) API 构建tf.keras模型:

    class MyModel(Model):
      def __init__(self):
        super(MyModel, self).__init__()
        self.conv1 = Conv2D(32, 3, activation='relu')
        self.flatten = Flatten()
        self.d1 = Dense(128, activation='relu')
        self.d2 = Dense(10, activation='softmax')
    
      def call(self, x):
        x = self.conv1(x)
        x = self.flatten(x)
        x = self.d1(x)
        return self.d2(x)
    
    model = MyModel()
    

    为训练选择优化器与损失函数:

    loss_object = tf.keras.losses.SparseCategoricalCrossentropy()
    
    optimizer = tf.keras.optimizers.Adam()
    

    选择衡量指标来度量模型的损失值(loss)和准确率(accuracy)。这些指标在 epoch 上累积值,然后打印出整体结果。

    train_loss = tf.keras.metrics.Mean(name='train_loss')
    train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='train_accuracy')
    
    test_loss = tf.keras.metrics.Mean(name='test_loss')
    test_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='test_accuracy')
    

    使用tf.GradientTape来训练模型:

    @tf.function
    def train_step(images, labels):
      with tf.GradientTape() as tape:
        predictions = model(images)
        loss = loss_object(labels, predictions)
      gradients = tape.gradient(loss, model.trainable_variables)
      optimizer.apply_gradients(zip(gradients, model.trainable_variables))
    
      train_loss(loss)  # 得到tensor的值,并不是求mean
      train_accuracy(labels, predictions)
    

    测试模型:

    @tf.function
    def test_step(images, labels):
      predictions = model(images)
      t_loss = loss_object(labels, predictions)
    
      test_loss(t_loss)
      test_accuracy(labels, predictions)
    
    EPOCHS = 5
    
    for epoch in range(EPOCHS):
      # 在下一个epoch开始时,重置评估指标
      train_loss.reset_states()
      train_accuracy.reset_states()
      test_loss.reset_states()
      test_accuracy.reset_states()
    
      for images, labels in train_ds:
        train_step(images, labels)
    
      for test_images, test_labels in test_ds:
        test_step(test_images, test_labels)
    
      template = 'Epoch {}, Loss: {}, Accuracy: {}, Test Loss: {}, Test Accuracy: {}'
      print (template.format(epoch+1,
                             train_loss.result(),
                             train_accuracy.result()*100,
                             test_loss.result(),
                             test_accuracy.result()*100))
    
    WARNING:tensorflow:Layer my_model is casting an input tensor from dtype float64 to the layer's dtype of float32, which is new behavior in TensorFlow 2.  The layer has dtype float32 because it's dtype defaults to floatx.
    
    If you intended to run this layer in float32, you can safely ignore this warning. If in doubt, this warning is likely only an issue if you are porting a TensorFlow 1.X model to TensorFlow 2.
    
    To change all layers to have dtype float64 by default, call `tf.keras.backend.set_floatx('float64')`. To change just this layer, pass dtype='float64' to the layer constructor. If you are the author of this layer, you can disable autocasting by passing autocast=False to the base Layer constructor.
    
    Epoch 1, Loss: 0.13130314648151398, Accuracy: 96.03833770751953, Test Loss: 0.06053972616791725, Test Accuracy: 97.91999816894531
    Epoch 2, Loss: 0.042836885899305344, Accuracy: 98.63333129882812, Test Loss: 0.05354950577020645, Test Accuracy: 98.23999786376953
    Epoch 3, Loss: 0.023272410035133362, Accuracy: 99.25, Test Loss: 0.0571180060505867, Test Accuracy: 98.29000091552734
    Epoch 4, Loss: 0.013985390774905682, Accuracy: 99.51000213623047, Test Loss: 0.061239469796419144, Test Accuracy: 98.3499984741211
    Epoch 5, Loss: 0.008612685836851597, Accuracy: 99.70166778564453, Test Loss: 0.060723815113306046, Test Accuracy: 98.44999694824219
    


    转自: [针对专业人员的 TensorFlow 2.0 入门](https://www.tensorflow.org/tutorials/quickstart/advanced)
  • 相关阅读:
    纽约顶级富婆鄙视链:4星|《我是个妈妈,我需要铂金包:一个耶鲁人类学博士的上东区育儿战争》
    2星|陈春花《顺德40年》:各种官宣的汇编,内容太虚,新信息太少
    人们喜欢传播符合自己三观的新闻,不在乎真假:4星|《环球科学》2018年12月号
    营销相关21本书
    5星|《辩论:美国制宪会议记录》:200年前的会议纪要
    3星|《品牌物理学》:理论没有实际应用案例,有推销软件的嫌疑
    关于思考的思考12本书,5星2本,4星7本
    Chrome插件 postman的使用方法详解!最全面的教程
    postman发送json请求,使用案例
    SUSE Enterprise Server 12 SP3 64 设置防火墙开放8080端口
  • 原文地址:https://www.cnblogs.com/pengweii/p/12529464.html
Copyright © 2011-2022 走看看