zoukankan      html  css  js  c++  java
  • Python Basics with Numpy

    原链接

    1 - Building basic functions with numpy

    1.1 - sigmoid function

    (sigmoid(x) = frac{1}{1+e^{-x}}) is sometimes also known as the logistic function. It is a non-linear function used not only in Machine Learning (Logistic Regression), but also in Deep Learning.

    [ ext{For } x in mathbb{R}^n ext{, } sigmoid(x) = sigmoidegin{pmatrix} x_1 \ x_2 \ ... \ x_n \ end{pmatrix} = egin{pmatrix} frac{1}{1+e^{-x_1}} \ frac{1}{1+e^{-x_2}} \ ... \ frac{1}{1+e^{-x_n}} \ end{pmatrix} ag{1} ]

    # GRADED FUNCTION: sigmoid
    
    import numpy as np # this means you can access numpy functions by writing np.function() instead of numpy.function()
    
    def sigmoid(x):
        """
        Compute the sigmoid of x
    
        Arguments:
        x -- A scalar or numpy array of any size
    
        Return:
        s -- sigmoid(x)
        """
        
        ### START CODE HERE ### (≈ 1 line of code)
        s = 1 / (1 + np.exp(-x))
        ### END CODE HERE ###
        
        return s
    

    1.2 - Sigmoid gradient

    [sigmoid\_derivative(x) = sigma'(x) = sigma(x) (1 - sigma(x)) ag{2} ]

    # GRADED FUNCTION: sigmoid_derivative
    
    def sigmoid_derivative(x):
        """
        Compute the gradient (also called the slope or derivative) of the sigmoid function with respect to its input x.
        You can store the output of the sigmoid function into variables and then use it to calculate the gradient.
        
        Arguments:
        x -- A scalar or numpy array
    
        Return:
        ds -- Your computed gradient.
        """
        
        ### START CODE HERE ### (≈ 2 lines of code)
        s = sigmoid(x)
        ds = s * (1 - s)
        ### END CODE HERE ###
        
        return ds
    

    1.3 - Reshaping arrays

    # GRADED FUNCTION: image2vector
    def image2vector(image):
        """
        Argument:
        image -- a numpy array of shape (length, height, depth)
        
        Returns:
        v -- a vector of shape (length*height*depth, 1)
        """
        
        ### START CODE HERE ### (≈ 1 line of code)
        v = image.reshape(image.shape[0]*image.shape[1], image.shape[2])
        ### END CODE HERE ###
        
        return v
    

    1.4 - Normalizing rows

    Another common technique we use in Machine Learning and Deep Learning is to normalize our data. It often leads to a better performance because gradient descent converges faster after normalization. Here, by normalization we mean changing x to (frac{x}{| x|}) (dividing each row vector of x by its norm).

    For example, if

    [x = egin{bmatrix} 0 & 3 & 4 \ 2 & 6 & 4 \ end{bmatrix} ag{3} ]

    then

    [| x| = np.linalg.norm(x, axis = 1, keepdims = True) = egin{bmatrix} 5 \ sqrt{56} \ end{bmatrix} ag{4} ]

    and

    [x\_normalized = frac{x}{| x|} = egin{bmatrix} 0 & frac{3}{5} & frac{4}{5} \ frac{2}{sqrt{56}} & frac{6}{sqrt{56}} & frac{4}{sqrt{56}} \ end{bmatrix} ag{5} ]

    # GRADED FUNCTION: normalizeRows
    
    def normalizeRows(x):
        """
        Implement a function that normalizes each row of the matrix x (to have unit length).
        
        Argument:
        x -- A numpy matrix of shape (n, m)
        
        Returns:
        x -- The normalized (by row) numpy matrix. You are allowed to modify x.
        """
        
        ### START CODE HERE ### (≈ 2 lines of code)
        # Compute x_norm as the norm 2 of x. Use np.linalg.norm(..., ord = 2, axis = ..., keepdims = True)
        x_norm = np.linalg.norm(x, axis=1, keepdims = True)  # keepdims默认为False,那样算出来的x_norm的shape为(n,),设为True后x_norm才是一个行向量,shape为(n,1)
        
        # Divide x by its norm.
        x = x / x_norm
        ### END CODE HERE ###
    
        return x
    
    x = np.array([
        [0, 3, 4],
        [1, 6, 4]])
    print("normalizeRows(x) = " + str(normalizeRows(x)))
    

    normalizeRows(x) = [[ 0. 0.6 0.8 ]
    [ 0.13736056 0.82416338 0.54944226]]

    1.5 - Broadcasting and the softmax function

    [ ext{for } x in mathbb{R}^{1 imes n} ext{, } softmax(x) = softmax(egin{bmatrix} x_1 && x_2 && ... && x_n end{bmatrix}) = egin{bmatrix} frac{e^{x_1}}{sum_{j}e^{x_j}} && frac{e^{x_2}}{sum_{j}e^{x_j}} && ... && frac{e^{x_n}}{sum_{j}e^{x_j}} end{bmatrix} ]

    [ ext{for a matrix } x in mathbb{R}^{m imes n} ext{, $x_{ij}$ maps to the element in the $i^{th}$ row and $j^{th}$ column of $x$, thus we have: } ]

    [softmax(x) = softmaxegin{bmatrix} x_{11} & x_{12} & x_{13} & dots & x_{1n} \ x_{21} & x_{22} & x_{23} & dots & x_{2n} \ vdots & vdots & vdots & ddots & vdots \ x_{m1} & x_{m2} & x_{m3} & dots & x_{mn} end{bmatrix} = egin{bmatrix} frac{e^{x_{11}}}{sum_{j}e^{x_{1j}}} & frac{e^{x_{12}}}{sum_{j}e^{x_{1j}}} & frac{e^{x_{13}}}{sum_{j}e^{x_{1j}}} & dots & frac{e^{x_{1n}}}{sum_{j}e^{x_{1j}}} \ frac{e^{x_{21}}}{sum_{j}e^{x_{2j}}} & frac{e^{x_{22}}}{sum_{j}e^{x_{2j}}} & frac{e^{x_{23}}}{sum_{j}e^{x_{2j}}} & dots & frac{e^{x_{2n}}}{sum_{j}e^{x_{2j}}} \ vdots & vdots & vdots & ddots & vdots \ frac{e^{x_{m1}}}{sum_{j}e^{x_{mj}}} & frac{e^{x_{m2}}}{sum_{j}e^{x_{mj}}} & frac{e^{x_{m3}}}{sum_{j}e^{x_{mj}}} & dots & frac{e^{x_{mn}}}{sum_{j}e^{x_{mj}}} end{bmatrix} = egin{pmatrix} softmax ext{(first row of x)} \ softmax ext{(second row of x)} \ ... \ softmax ext{(last row of x)} \ end{pmatrix} ]

    # GRADED FUNCTION: softmax
    
    def softmax(x):
        """Calculates the softmax for each row of the input x.
    
        Your code should work for a row vector and also for matrices of shape (m,n).
    
        Argument:
        x -- A numpy matrix of shape (m,n)
    
        Returns:
        s -- A numpy matrix equal to the softmax of x, of shape (m,n)
        """
        
        ### START CODE HERE ### (≈ 3 lines of code)
        # Apply exp() element-wise to x. Use np.exp(...).
        x_exp = np.exp(x)
    
        # Create a vector x_sum that sums each row of x_exp. Use np.sum(..., axis = 1, keepdims = True).
        x_sum = np.sum(x_exp, axis=1, keepdims=True)
        
        # Compute softmax(x) by dividing x_exp by x_sum. It should automatically use numpy broadcasting.
        s = x_exp / x_sum
    
        ### END CODE HERE ###
        
        return s
    

    2 - Vectorization

    传统实现方法:

    x1 = [9, 2, 5, 0, 0, 7, 5, 0, 0, 0, 9, 2, 5, 0, 0]
    x2 = [9, 2, 2, 9, 0, 9, 2, 5, 0, 0, 9, 2, 5, 0, 0]
    
    ### CLASSIC DOT PRODUCT OF VECTORS IMPLEMENTATION ###
    dot = 0
    for i in range(len(x1)):
        dot+= x1[i]*x2[i]
    
    ### CLASSIC OUTER PRODUCT IMPLEMENTATION ###
    outer = np.zeros((len(x1),len(x2))) # we create a len(x1)*len(x2) matrix with only zeros
    for i in range(len(x1)):
        for j in range(len(x2)):
            outer[i,j] = x1[i]*x2[j]
    
    ### CLASSIC ELEMENTWISE IMPLEMENTATION ###
    mul = np.zeros(len(x1))
    for i in range(len(x1)):
        mul[i] = x1[i]*x2[i]
    
    ### CLASSIC GENERAL DOT PRODUCT IMPLEMENTATION ###
    W = np.random.rand(3,len(x1)) # Random 3*len(x1) numpy array
    gdot = np.zeros(W.shape[0])
    for i in range(W.shape[0]):
        for j in range(len(x1)):
            gdot[i] += W[i,j]*x1[j]
    
    

    向量化实现:

    x1 = [9, 2, 5, 0, 0, 7, 5, 0, 0, 0, 9, 2, 5, 0, 0]
    x2 = [9, 2, 2, 9, 0, 9, 2, 5, 0, 0, 9, 2, 5, 0, 0]
    
    ### VECTORIZED DOT PRODUCT OF VECTORS ###
    dot = np.dot(x1,x2)
    
    ### VECTORIZED OUTER PRODUCT ###
    outer = np.outer(x1,x2)
    
    ### VECTORIZED ELEMENTWISE MULTIPLICATION ###
    mul = np.multiply(x1,x2)
    
    ### VECTORIZED GENERAL DOT PRODUCT ###
    dot = np.dot(W,x1)
    
    

    2.1 - Implement the L1 and L2 loss functions

    • L1 loss is defined as:

    [egin{align*} & L_1(hat{y}, y) = sum_{i=0}^m|y^{(i)} - hat{y}^{(i)}| end{align*} ag{6} ]

    # GRADED FUNCTION: L1
    
    def L1(yhat, y):
        """
        Arguments:
        yhat -- vector of size m (predicted labels)
        y -- vector of size m (true labels)
        
        Returns:
        loss -- the value of the L1 loss function defined above
        """
        
        ### START CODE HERE ### (≈ 1 line of code)
        loss = np.sum(np.abs(yhat - y))
        ### END CODE HERE ###
        
        return loss
    
    • L2 loss is defined as

    [egin{align*} & L_2(hat{y},y) = sum_{i=0}^m(y^{(i)} - hat{y}^{(i)})^2 end{align*} ag{7} ]

    # GRADED FUNCTION: L2
    
    def L2(yhat, y):
        """
        Arguments:
        yhat -- vector of size m (predicted labels)
        y -- vector of size m (true labels)
        
        Returns:
        loss -- the value of the L2 loss function defined above
        """
        
        ### START CODE HERE ### (≈ 1 line of code)
        loss = np.sum(np.dot((y - yhat), (y - yhat)))
        ### END CODE HERE ###
        
        return loss
    
  • 相关阅读:
    游戏编程模式之原型模式
    游戏编程模式之观察者模式
    游戏编程模式之享元模式
    游戏编程模式之命令模式
    数据库系统概论(二):关系数据库
    数据库系统概论(一):绪论
    [Unity] Unity Cursor 设置和API解析
    HDU 5492 Find a path
    HDU 1317 XYZZY
    Codeforces 508D Tanya and Password
  • 原文地址:https://www.cnblogs.com/pengweii/p/12649842.html
Copyright © 2011-2022 走看看