Find the contiguous subarray within an array (containing at least one number) which has the largest sum.
For example, given the array [−2,1,−3,4,−1,2,1,−5,4]
,
the contiguous subarray [4,−1,2,1]
has the largest sum = 6
.
More practice:
If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.
more practice是搞笑的。
还有更简单的方法,懒得改了。事实证明看书太多也不好。
class Solution { public: int maxSubArray(int A[], int n) { vector<int> sum; if(n == 0)return 0; int maxsum =A[0]; sum.push_back(A[0]); for(int i = 1 ; i < n ; i++) { int temp = sum[i-1]+A[i]; if(temp > maxsum)maxsum = temp; sum.push_back(temp); } int min = 0; for(int i = 1 ; i < n;i++) { if(sum[i] - sum[min] > maxsum) maxsum = sum[i] - sum[min]; if(sum[i] < sum[min])min = i; } return maxsum; } };