Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[ [2], [3,4], [6,5,7], [4,1,8,3] ]
The minimum path sum from top to bottom is 11
(i.e., 2 + 3 + 5 + 1 = 11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
动态规划,填格子。空间不是问题。
class Solution { public: int minimumTotal(vector<vector<int> > &triangle) { vector<vector<int> >path (triangle); for(int i = 1 ; i < triangle.size();i++) { for(int j = 0 ; j <=i ; j ++) { if(j <= i-1 && j > 0) path[i][j] = min(path[i-1][j-1],path[i-1][j])+triangle[i][j]; else if(j > i-1 && j!=0) path[i][j] = path[i-1][j-1]+triangle[i][j]; else path[i][j]= path[i-1][j] +triangle[i][j]; } } int min = path[triangle.size()-1][0]; for(int i = 1 ; i < triangle.size();i++) { if(path[triangle.size()-1][i] < min)min = path[triangle.size()-1][i]; } return min; } };