zoukankan      html  css  js  c++  java
  • Triangle

    Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.

    For example, given the following triangle

    [
         [2],
        [3,4],
       [6,5,7],
      [4,1,8,3]
    ]
    

    The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).

    Note:
    Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.

    动态规划,填格子。空间不是问题。

    class Solution {
    public:
        int minimumTotal(vector<vector<int> > &triangle) {
            vector<vector<int> >path (triangle);
            for(int i = 1 ; i < triangle.size();i++)
            {
                for(int j = 0 ; j <=i ; j ++)
                {
                    if(j <= i-1 && j > 0)  path[i][j] = min(path[i-1][j-1],path[i-1][j])+triangle[i][j];
                    else if(j > i-1 && j!=0) path[i][j] = path[i-1][j-1]+triangle[i][j];
                    else path[i][j]= path[i-1][j] +triangle[i][j];
                }
            }
            int min = path[triangle.size()-1][0];
            for(int i = 1 ; i < triangle.size();i++)
            {
                if(path[triangle.size()-1][i] < min)min = path[triangle.size()-1][i];
            }
            return min;
        }
    };
    

      

  • 相关阅读:
    最短路问题之Dijkstra算法
    最短路问题之Bellman-ford算法
    最小生成树之Kruskal(克鲁斯卡尔)算法
    二分图问题
    七桥问题与欧拉道路
    拓扑排序
    八连通块
    四连通检测
    USACO19DEC题解
    1206 雅礼集训D2题解
  • 原文地址:https://www.cnblogs.com/pengyu2003/p/3611697.html
Copyright © 2011-2022 走看看