Given a sorted array of integers, find the starting and ending position of a given target value.
Your algorithm's runtime complexity must be in the order of O(log n).
If the target is not found in the array, return [-1, -1]
.
For example,
Given [5, 7, 7, 8, 8, 10]
and target value 8,
return [3, 4]
.
边界条件很恶心。
主要思想是:
1.左边界的前一个数要小于target,右边界的后一个数要大于target
2.如果没有边界左(右)的数,则可以直接返回
class Solution { public: vector<int> searchRange(int A[], int n, int target) { vector<int> re; re.push_back(-1); re.push_back(-1); if(n < 1) { return re; } re[0]=findleft(A,n,target); re[1]=findright(A,n,target); return re; } int findleft(int A[],int n,int target) { int left = 0; int right = n-1; if(A[0]==target)return 0; while(left <= right) { int mid = left + (right - left)/2; if(A[mid] == target &&( mid-1 >=0 &&A[mid-1] < target|| mid ==0))return mid; if(A[mid] >= target )//&& mid-1 >=0 &&A[mid-1] == target) { right = mid -1; } else if(A[mid] < target) { left = mid+1; } } return -1; } int findright(int A[],int n,int target) { int left = 0; int right = n-1; if(A[n-1]==target)return n-1; while(left <= right) { int mid = left + (right - left)/2; if(A[mid] == target && (mid+1 <n &&A[mid+1] > target || mid+1 == n))return mid; if(A[mid] > target ) { right = mid -1; } else if(A[mid] <= target )//&& mid+1<n && A[mid+1]==target ) { left = mid+1; } } return -1; } };