zoukankan      html  css  js  c++  java
  • 视觉十四讲:第八讲_直接法

    1.直接法的推导:

    考虑某个空间点P和两个时刻的相机,P的世界坐标为[X,Y,Z],它在两个相机上成像,记非齐次像素坐标为(p_{1},p_{2}),目标是求第一个相机到第二个相机的相对位姿变换。

    直接法的思路是根据当前相机的位姿估计值,来寻找(p_{2})的位置,误差项为光度误差
    (e = I_{1}(p_{1}) - I_{2}(p_{2}))
    考虑多个空间点P,那个整个相机位姿估计问题会变成:

    主要问题是求误差e相对于位姿的导数关系。使用李代数的扰动模型,给(exp(xi))左乘一个小扰动(exp(delta xi))得:

    记:(q = delta xi^{Lambda} exp(xi^{Lambda}) P),
    (u = frac{1}{Z_{2}}Kq)
    q为P在扰动之后,位于第二个相机坐标系下的坐标,而u为它的像素坐标,利用一阶泰勒展开,有:


    故误差相对于李代数的雅可比矩阵为:

    2.直接法分类:

    1.稀疏关键点:通常使用数百个至上千个关键点,像LK光流那样,这种稀疏直接法不必计算描述子,因此速度最快,但只能计算稀疏的重构。
    2.半稠密直接法:考虑图像内带有梯度的像素点,舍弃像素梯度不明显的地方,重构一个半稠密结构。
    3.稠密直接法:考虑所有像素点,需要GPU加速。

    3.实践直接法:

    1.单层稀疏直接法:
    class JacobianAccumulator {
    public:
        JacobianAccumulator(
            const cv::Mat &img1_,
            const cv::Mat &img2_,
            const VecVector2d &px_ref_,
            const vector<double> depth_ref_,
            Sophus::SE3d &T21_) :
            img1(img1_), img2(img2_), px_ref(px_ref_), depth_ref(depth_ref_), T21(T21_) {
            projection = VecVector2d(px_ref.size(), Eigen::Vector2d(0, 0));
        }
    
        /// accumulate jacobians in a range
        void accumulate_jacobian(const cv::Range &range);
    
        /// get hessian matrix
        Matrix6d hessian() const { return H; }
    
        /// get bias
        Vector6d bias() const { return b; }
    
        /// get total cost
        double cost_func() const { return cost; }
    
        /// get projected points
        VecVector2d projected_points() const { return projection; }
    
        /// reset h, b, cost to zero
        void reset() {
            H = Matrix6d::Zero();
            b = Vector6d::Zero();
            cost = 0;
        }
    
    private:
        const cv::Mat &img1;
        const cv::Mat &img2;
        const VecVector2d &px_ref;
        const vector<double> depth_ref;
        Sophus::SE3d &T21;
        VecVector2d projection; // projected points
    
        std::mutex hessian_mutex;
        Matrix6d H = Matrix6d::Zero();
        Vector6d b = Vector6d::Zero();
        double cost = 0;
    };
    void DirectPoseEstimationSingleLayer(
        const cv::Mat &img1,
        const cv::Mat &img2,
        const VecVector2d &px_ref,
        const vector<double> depth_ref,
        Sophus::SE3d &T21) {
    
        const int iterations = 10;
        double cost = 0, lastCost = 0;
        auto t1 = chrono::steady_clock::now();
        JacobianAccumulator jaco_accu(img1, img2, px_ref, depth_ref, T21);
    
        for (int iter = 0; iter < iterations; iter++) {  //10次迭代次数
            jaco_accu.reset();
            cv::parallel_for_(cv::Range(0, px_ref.size()),  //循环2000个点
                              std::bind(&JacobianAccumulator::accumulate_jacobian, &jaco_accu, std::placeholders::_1));
            
    		Matrix6d H = jaco_accu.hessian();
            Vector6d b = jaco_accu.bias();
    
            //10次迭代获取更新值
            Vector6d update = H.ldlt().solve(b);
    		//更新姿态
            T21 = Sophus::SE3d::exp(update) * T21;
    		
            cost = jaco_accu.cost_func();
    
            if (std::isnan(update[0])) {
                // sometimes occurred when we have a black or white patch and H is irreversible
                cout << "update is nan" << endl;
                break;
            }
            if (iter > 0 && cost > lastCost) {
                cout << "cost increased: " << cost << ", " << lastCost << endl;
                break;
            }
            if (update.norm() < 1e-3) {
                // converge
                break;
            }
    
            lastCost = cost;
            cout << "iteration: " << iter << ", cost: " << cost << endl;
        }
    
        cout << "T21 = 
    " << T21.matrix() << endl;
        auto t2 = chrono::steady_clock::now();
        auto time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
        cout << "direct method for single layer: " << time_used.count() << endl;
    
        // plot the projected pixels here
        cv::Mat img2_show;
        cv::cvtColor(img2, img2_show, CV_GRAY2BGR);
        VecVector2d projection = jaco_accu.projected_points();
        for (size_t i = 0; i < px_ref.size(); ++i) {
            auto p_ref = px_ref[i];
            auto p_cur = projection[i];
            if (p_cur[0] > 0 && p_cur[1] > 0) {
                cv::circle(img2_show, cv::Point2f(p_cur[0], p_cur[1]), 2, cv::Scalar(0, 250, 0), 2);
                cv::line(img2_show, cv::Point2f(p_ref[0], p_ref[1]), cv::Point2f(p_cur[0], p_cur[1]),
                         cv::Scalar(0, 250, 0));
            }
        }
        cv::imshow("current", img2_show);
        cv::waitKey();
    }
    void JacobianAccumulator::accumulate_jacobian(const cv::Range &range) {
    
        // parameters
        const int half_patch_size = 1; //区块大小
        int cnt_good = 0;
        Matrix6d hessian = Matrix6d::Zero();
        Vector6d bias = Vector6d::Zero();
        double cost_tmp = 0;
    
        for (size_t i = range.start; i < range.end; i++) {
    
            //第一张图的像素坐标转相机归一化坐标,乘深度转为相机3D点
            Eigen::Vector3d point_ref =
                depth_ref[i] * Eigen::Vector3d((px_ref[i][0] - cx) / fx, (px_ref[i][1] - cy) / fy, 1);
            //将第一张图的点根据估计的位姿,转到第二张图的坐标系下
    		Eigen::Vector3d point_cur = T21 * point_ref;
            if (point_cur[2] < 0)   // depth invalid
                continue;
    		//将相机坐标系转为像素坐标系
            float u = fx * point_cur[0] / point_cur[2] + cx, v = fy * point_cur[1] / point_cur[2] + cy;
            //去除边界点
    		if (u < half_patch_size || u > img2.cols - half_patch_size || v < half_patch_size ||
                v > img2.rows - half_patch_size)
                continue;
            
    		
            projection[i] = Eigen::Vector2d(u, v);
            double X = point_cur[0], Y = point_cur[1], Z = point_cur[2],
    		//深度平方,用于雅可比矩阵的计算
                Z2 = Z * Z, Z_inv = 1.0 / Z, Z2_inv = Z_inv * Z_inv;
    			
            cnt_good++;
    
            //2个for循环主要是是为了计算图像梯度
            for (int x = -half_patch_size; x <= half_patch_size; x++)
                for (int y = -half_patch_size; y <= half_patch_size; y++) {
    				
    				//重投影光度误差,
                    double error = GetPixelValue(img1, px_ref[i][0] + x, px_ref[i][1] + y) -
                                   GetPixelValue(img2, u + x, v + y);
                    Matrix26d J_pixel_xi;
                    Eigen::Vector2d J_img_pixel;
    				//计算李代数雅可比矩阵
                    J_pixel_xi(0, 0) = fx * Z_inv;
                    J_pixel_xi(0, 1) = 0;
                    J_pixel_xi(0, 2) = -fx * X * Z2_inv;
                    J_pixel_xi(0, 3) = -fx * X * Y * Z2_inv;
                    J_pixel_xi(0, 4) = fx + fx * X * X * Z2_inv;
                    J_pixel_xi(0, 5) = -fx * Y * Z_inv;
    
                    J_pixel_xi(1, 0) = 0;
                    J_pixel_xi(1, 1) = fy * Z_inv;
                    J_pixel_xi(1, 2) = -fy * Y * Z2_inv;
                    J_pixel_xi(1, 3) = -fy - fy * Y * Y * Z2_inv;
                    J_pixel_xi(1, 4) = fy * X * Y * Z2_inv;
                    J_pixel_xi(1, 5) = fy * X * Z_inv;
    
    				//图像梯度
                    J_img_pixel = Eigen::Vector2d(
                        0.5 * (GetPixelValue(img2, u + 1 + x, v + y) - GetPixelValue(img2, u - 1 + x, v + y)),
                        0.5 * (GetPixelValue(img2, u + x, v + 1 + y) - GetPixelValue(img2, u + x, v - 1 + y))
                    );
    
                    // 计算误差对于李代数的雅可比矩阵
                    Vector6d J = -1.0 * (J_img_pixel.transpose() * J_pixel_xi).transpose();
    
                    hessian += J * J.transpose();
                    bias += -error * J;
                    cost_tmp += error * error;
                }
        }
    
        if (cnt_good) {
            // set hessian, bias and cost
            unique_lock<mutex> lck(hessian_mutex);   //多线程互斥量,自动释放
            H += hessian;
            b += bias;
            cost += cost_tmp / cnt_good;
        }
    }
    
    
    2.多层稀疏直接法:

    类似于光流,把单层直接法扩展到金字塔式的多层直接法上,用Coarse-to-fine的过程计算相对运动。

    void DirectPoseEstimationMultiLayer(
        const cv::Mat &img1,
        const cv::Mat &img2,
        const VecVector2d &px_ref,
        const vector<double> depth_ref,
        Sophus::SE3d &T21) {
    
        // parameters
        int pyramids = 4;
        double pyramid_scale = 0.5;
        double scales[] = {1.0, 0.5, 0.25, 0.125};
    
        // create pyramids
        vector<cv::Mat> pyr1, pyr2; // image pyramids
        for (int i = 0; i < pyramids; i++) {
            if (i == 0) {
                pyr1.push_back(img1);
                pyr2.push_back(img2);
            } else {
                cv::Mat img1_pyr, img2_pyr;
                cv::resize(pyr1[i - 1], img1_pyr,
                           cv::Size(pyr1[i - 1].cols * pyramid_scale, pyr1[i - 1].rows * pyramid_scale));
                cv::resize(pyr2[i - 1], img2_pyr,
                           cv::Size(pyr2[i - 1].cols * pyramid_scale, pyr2[i - 1].rows * pyramid_scale));
                pyr1.push_back(img1_pyr);
                pyr2.push_back(img2_pyr);
            }
        }
    
        double fxG = fx, fyG = fy, cxG = cx, cyG = cy;  // backup the old values
        for (int level = pyramids - 1; level >= 0; level--) {
            VecVector2d px_ref_pyr; // set the keypoints in this pyramid level
            for (auto &px: px_ref) {
                px_ref_pyr.push_back(scales[level] * px);
            }
    
            // scale fx, fy, cx, cy in different pyramid levels
            fx = fxG * scales[level];
            fy = fyG * scales[level];
            cx = cxG * scales[level];
            cy = cyG * scales[level];
            DirectPoseEstimationSingleLayer(pyr1[level], pyr2[level], px_ref_pyr, depth_ref, T21);
        }
    
    }
    
  • 相关阅读:
    support STL Viewer with WordPress On SAE
    个人自建网店(WordPress WooCommerce on SAE)集成支付宝支付
    问题解决: WordPress on SAE注册邮件无法发送
    移除Strorefront站点footer上的Storefront Design By WooThemes字样
    添加站点图标: 为SAE上的WordPress站点添加自己的Favicon
    在SAE上搭建自定义版本WordPress, 并用SAE Storage代替WordPress Uploads
    swift + xcode 新手上路
    Mac Yosemite下Android Studio环境问题集合
    分支(选择)语句
    Java入门
  • 原文地址:https://www.cnblogs.com/penuel/p/13441186.html
Copyright © 2011-2022 走看看