zoukankan      html  css  js  c++  java
  • Map集合基础02-HashMap

    数据结构(和ConcurrentHashMap类似)

    • 存储数据的基础结构时Node的数组;

    • 节点中保存的是当前节点的hash,主键Key,对应值value,链表的next;

     transient Node<K,V>[] table;
    
     static class Node<K,V> implements Map.Entry<K,V> {
            final int hash;
            final K key;
            V value;
            Node<K,V> next;
    }
    

    基础操作

    put方法

    • 方法和concurrentHashMap类似,其中涉及到红黑树的部分,可以查看另一篇红黑树的详细代码执行过程
       /**
        * 1.如果没初始化先进行初始化;
        * 2.hash对应的位置没有数据,则新增节点
        * 3.判断hash,key是否相同,相同则赋值临时值。否则,判断是树状结构则从红黑树中更新值,并返回替换的节点或者返回null;
        * 4.判断如果是链表则遍历链表,如果在链表中则返回替换的节点  
        * 5.完成上面这些后,节点计数+1,判断是否要进行重新调整数组大小
        */     
        final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                       boolean evict) {
            Node<K,V>[] tab; Node<K,V> p; int n, i;
            if ((tab = table) == null || (n = tab.length) == 0)//如果没有初始化,则进行初始胡
                n = (tab = resize()).length;
            if ((p = tab[i = (n - 1) & hash]) == null)//hash对应的数组位置为null,则新增Node节点
                tab[i] = newNode(hash, key, value, null);
            else {
                Node<K,V> e; K k;
                if (p.hash == hash &&
                    ((k = p.key) == key || (key != null && key.equals(k))))//如果key相等
                    e = p;//将当前节点赋值临时节点e
                else if (p instanceof TreeNode)//如果p节点是红黑树。那么在红黑树中插入节点
                    e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
                else {
                    /**
                     * 遍历链表,查找节点,会出现以下几种情况。
                     * 1.逐个遍历,判断节点key是否和新插入数据hash,key相等
                     * 2.如果没有,则新增节点,并判断是否要生成红黑树;
                     *  生成红黑树的条件:数组最小长度要为64,并且链表个数超过8个时  
                     */     
                    for (int binCount = 0; ; ++binCount) {
                        if ((e = p.next) == null) {
                            p.next = newNode(hash, key, value, null);
                            if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                                treeifyBin(tab, hash);
                            break;
                        }
                        if (e.hash == hash &&
                            ((k = e.key) == key || (key != null && key.equals(k))))
                            break;
                        p = e;//赋值下一个节点查看
                    }
                }
                if (e != null) { //如果能查找到节点,则将旧值换新值
                    V oldValue = e.value;
                    if (!onlyIfAbsent || oldValue == null)
                        e.value = value;
                    afterNodeAccess(e);
                    return oldValue;
                }
            }
            ++modCount;//数量+1
            // 判断是否需要重新设置大小
            if (++size > threshold)
                resize();
            afterNodeInsertion(evict);//钩子方法,用于子类实现
            return null;
        }
    /**
     * 1.确定新的数组大小
     * 2.进行数据节点重排
     */
    final Node<K,V>[] resize() {
            Node<K,V>[] oldTab = table;
            int oldCap = (oldTab == null) ? 0 : oldTab.length;//原始数组长度
            int oldThr = threshold;
            int newCap, newThr = 0;
             /**
              * 1.原始长度大于0,当大于等于最大容量,返回现有数组;
              * 2.新长度的大小为旧长度两倍且小于最大容量,并且旧长度大于最小初始长度时,新长度为为旧长度的2倍
              */           
            if (oldCap > 0) {
                if (oldCap >= MAXIMUM_CAPACITY) {
                    threshold = Integer.MAX_VALUE;
                    return oldTab;
                }
                else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                         oldCap >= DEFAULT_INITIAL_CAPACITY)
                    newThr = oldThr << 1; // double threshold
            }
            else if (oldThr > 0) //是否超过临界值
                newCap = oldThr;
            else {               //如果初始是0,则设置为默认
                newCap = DEFAULT_INITIAL_CAPACITY;
                newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
            }
           //新的临界值为0时
            if (newThr == 0) {
                float ft = (float)newCap * loadFactor;
                newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                          (int)ft : Integer.MAX_VALUE);
            }
            threshold = newThr;
            @SuppressWarnings({"rawtypes","unchecked"})//创建新的数组
            Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
            table = newTab;
            if (oldTab != null) {
                for (int j = 0; j < oldCap; ++j) {
                    Node<K,V> e;
                    if ((e = oldTab[j]) != null) {
                        oldTab[j] = null;
                        if (e.next == null)//节点为单个元素,直接赋值
                            newTab[e.hash & (newCap - 1)] = e;
                        else if (e instanceof TreeNode)//对树状结构进行重排序,判断是要变成更小的树或者存入数组
                            ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                        else { // 链状结构进行重排
                            Node<K,V> loHead = null, loTail = null;
                            Node<K,V> hiHead = null, hiTail = null;
                            Node<K,V> next;
                            do {
                                next = e.next;
                                if ((e.hash & oldCap) == 0) {
                                    if (loTail == null)
                                        loHead = e;
                                    else
                                        loTail.next = e;
                                    loTail = e;
                                }
                                else {
                                    if (hiTail == null)
                                        hiHead = e;
                                    else
                                        hiTail.next = e;
                                    hiTail = e;
                                }
                            } while ((e = next) != null);
                            if (loTail != null) {
                                loTail.next = null;
                                newTab[j] = loHead;
                            }
                            if (hiTail != null) {
                                hiTail.next = null;
                                newTab[j + oldCap] = hiHead;
                            }
                        }
                    }
                }
            }
            return newTab;//返回新的数组
        }
    
    

    remove方法

    • 查找出要移除的节点,统一进行移除操作
        final Node<K,V> removeNode(int hash, Object key, Object value,
                                   boolean matchValue, boolean movable) {
            Node<K,V>[] tab; Node<K,V> p; int n, index;
            if ((tab = table) != null && (n = tab.length) > 0 &&
                (p = tab[index = (n - 1) & hash]) != null) {//集合非空
                Node<K,V> node = null, e; K k; V v;
                if (p.hash == hash &&
                    ((k = p.key) == key || (key != null && key.equals(k))))//如果查到节点
                    node = p;
                else if ((e = p.next) != null) {
                    if (p instanceof TreeNode)
                        node = ((TreeNode<K,V>)p).getTreeNode(hash, key);//获取树结构中的节点
                    else {//获取链表中节点
                        do {
                            if (e.hash == hash &&
                                ((k = e.key) == key ||
                                 (key != null && key.equals(k)))) {
                                node = e;
                                break;
                            }
                            p = e;
                        } while ((e = e.next) != null);
                    }
                }
               //如果能找到节点,则统一进行一处处理
                if (node != null && (!matchValue || (v = node.value) == value ||
                                     (value != null && value.equals(v)))) {
                    if (node instanceof TreeNode)
                        ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
                    else if (node == p)//数组结构的话,替换成节点的next链节点(无则为null)
                        tab[index] = node.next;
                    else //链表的话,更改节点关联
                        p.next = node.next;
                    ++modCount;
                    --size;
                    afterNodeRemoval(node);//钩子方法
                    return node;
                }
            }
            return null;
        }
    
    

    get方法

    • 根据key查找节点
    final Node<K,V> getNode(int hash, Object key) {
            Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
            if ((tab = table) != null && (n = tab.length) > 0 &&
                (first = tab[(n - 1) & hash]) != null) {
             /**
              * 1.判断第一个节点,如果一致的就返回,如果不一样再看是不是树状结构或者链表结构
              * 2.树状结构的话,通过二分法进行查找;
              * 3.链表结构的话,逐个遍历进行查找;
              * 4.如果没有查找到,返回null;   
              */
                if (first.hash == hash && 
                    ((k = first.key) == key || (key != null && key.equals(k))))
                    return first;
                if ((e = first.next) != null) {
                    if (first instanceof TreeNode)
                        return ((TreeNode<K,V>)first).getTreeNode(hash, key);
                    do {
                        if (e.hash == hash &&
                            ((k = e.key) == key || (key != null && key.equals(k))))
                            return e;
                    } while ((e = e.next) != null);
                }
            }
            return null;
        }
    

    问题:

    1. 为啥默认的平衡因子时0.75?

    有位大佬博文分析的很清楚,有兴趣可以看一下:https://www.cnblogs.com/aspirant/p/11470928.html

    总结一下就是:提高空间利用率和 减少查询成本的折中,主要是泊松分布,0.75的话碰撞最小,
    

    2.HashMap和ConcurrentHashMap的区别?

    • 值插入时,ConcurrentHashMap是通过CAS插入新的数组节点,和通过Synchronized替换原节点,链表节点或树节点。

    • ConcurrentHashMap在进行插入,删除操作的时候会判断容器是否在扩容。

    由上面这两点可以看出ConcurrentHashMap相对于HashMap线程是安全的。

    • HashMap的优势在于:插入速度比较快;但是遇到多线程的时候,很容易出现链路闭环;

    3.为什么HashMap数组长度一定是2的次幂?

    • 获取位置更均衡

      • 插入值的位置tab[i = (n - 1) & hash],n-1之后各个位置刚好是1;

      • hash和(n-1)高位与,则为0,与(n-1)低位获取的数字是不变的。可以获得固定的存储位置。

    • 扩容定位更方便

      • n变成2倍,(n-1)向前进1;

      • n变成2倍,hash对应位为0时,存放位置不变

    具体如下图:

  • 相关阅读:
    《C++标准程序库》 第6章 STL Container
    《C++语言99个常见编程错误》
    单例模式
    《C++标准程序库》 第7章 Iterator Adapters
    Shell颜色封装(C++)
    《改善C++程序的150个建议》
    OpenCV之图片的创建、保存和复制
    XMLDOM对象方法:对象事件
    三国中最精辟的十句话
    中国十大名茶及鉴别方法
  • 原文地址:https://www.cnblogs.com/perferect/p/13703805.html
Copyright © 2011-2022 走看看