zoukankan      html  css  js  c++  java
  • 数据结构与算法(1)支线任务3——Largest Rectangle in Histogram

    题目如下:(https://leetcode.com/problems/largest-rectangle-in-histogram/)

    Given n non-negative integers representing the histogram's bar height where the width of each bar is 1, find the area of largest rectangle in the histogram.

            

    Above is a histogram where width of each bar is 1, given height = [2,1,5,6,2,3]The largest rectangle is shown in the shaded area, which has area = 10 unit.

    For example,
    Given height = [2,1,5,6,2,3],
    return 10.

    题目似乎很简单,只要求出直方图中最大的矩形面积即可。然而最最单纯的O(n2)算法显然会跪(别人试过,我就不作死了……)。

    有两类思路,分别如下:

    Part One

    提示说用栈,然而并没有想出如何使用。看懂别人的思路后再写,总觉得略微无聊……还是在此用自己的话复述一下吧。

    (以下所有图片来自http://blog.csdn.net/doc_sgl/article/details/11805519

    题目要求需要找面积最大的矩形,这个矩形的高为直方图中某柱高,我们可以认为矩形是由一个柱向两侧扩展得到的。

    题中的直方图可以形象地理解为“波”,在一个波峰附近第一个高度下降的柱(下图中的t)会限制其左侧比它高的柱(记某柱为z)形成矩形的宽度,又由于t是该波峰第一个下降的柱形,故左侧比它高的柱z形成的矩形宽度为t与z横坐标之差(由于后续操作形成的波并不是连续的柱,此处实际上应为t-z前一个柱横坐标-1),这样就得到了一个矩形面积。

    如上操作后,柱z已经完成了它的使命(已经求出由它形成的矩形的面积,左右的矮柱也不需要它的高度),当t左侧所有高柱都完成使命后,t成了相对高的柱,可以看作与前面的更矮的柱又在形成一个又矮又宽的波峰(图中阴影),遇到更矮的i之后,重复前面的操作即可得到所有柱生成的矩形的面积。

    于是,我们可以用栈保存一串连续上升的柱(波上升的部分),当遇到矮柱时,求前面每个高柱形成的矩形的面积,然后将这个没用的高柱弹出。最后将矮柱压入,作为下一个波的上升部分。这个过程扫描一遍,算法复杂度为O(n)。

    /************************如果觉得上面写的清晰可以忽略下面的部分**************************/

    针对样例输入,可以进行如下分析:

    1.将柱0压栈,。

    2.柱1更矮,求柱0形成的矩形面积,将柱1压栈。

    3.柱1柱2柱3高度递增,进栈。

    4.柱4比2,3矮:柱3求面积,出栈;柱2求面积,出栈。

    5.柱4柱5进栈。

    6.最后求栈中剩余柱形成矩形的面积(相当于最后有一个高度为0的柱,使其前面的柱出栈)。

    (似乎应该在这里再说一下,以上所有图片来自http://blog.csdn.net/doc_sgl/article/details/11805519 )//2015/11/13日补

    /************************懂了上面,下面的代码其实不重要了**************************/

    class Solution {
    public:
        int largestRectangleArea(vector<int>& height) {
            
            height.push_back(0); //使最后栈中剩余柱出栈
            stack<int> serHeight; //储存高度递增的柱的栈
            int maxArea = 0; //最大面积
            int curArea = 0; //当前矩形面积
            
            for (int i = 0; i < height.size(); i++)
            {
                if (serHeight.empty() || height[serHeight.top()] <= height[i]) //高度上升,进栈
                {
                    serHeight.push(i);
                }
                else
                {
                    //将高矩形出栈,求其生成的矩形面积
                    while (height[serHeight.top()] > height[i])
                    {
                        int cur = serHeight.top();
                        serHeight.pop();
                        if (serHeight.empty())
                        {
                            curArea = height[cur] * i;
                            maxArea = (maxArea > curArea) ? maxArea : curArea;
                            break;
                        }
                        curArea = height[cur] * (i - serHeight.top() - 1);
                        maxArea = (maxArea > curArea) ? maxArea : curArea;
                    }
                    
                    serHeight.push(i);
                }
            }
            return maxArea;
        }
    };

    Part Two

    一个更容易想到的思路是先判断每个柱左右两边不比它矮的最远柱,然后可以更容易地算出由当前柱形成的矩形面积。

    利用动态规划的思想,可以利用前面已确定的最远高柱更新当前需要找的柱。比如下面代码中若l[i]左边的l[i]-1比i还要高,那么可以用l[l[i] - 1]更新l[i],这样可以加快查找高柱的速度。

    class Solution {
    public:
        int largestRectangleArea(vector<int>& height) {
            int maxArea = 0; //最大面积
            int curArea = 0; //当前面积
            int s = height.size(); //柱形个数
            int *l = new int[s]; //储存不比当前柱矮的最左端柱
            int *r = new int[s]; //储存不比当前柱矮的最右端柱
    
            //先找储存不比当前柱矮的最左端柱
            for (int i = 0; i < s; i++)
            {
                l[i] = i; //自己不比自己矮
                //利用已存过的l[i]判断是否找到最左端
                while (l[i] && height[l[i] - 1] >= height[i])
                {
                    l[i] = l[l[i] - 1];
                }
            }
            //再找储存不比当前柱矮的最右端柱
            for (int i = s - 1; i >= 0; i--)
            {
                r[i] = i;
                while ((r[i] - s + 1) && height[r[i] + 1] >= height[i])
                {
                    r[i] = r[r[i] + 1];
                }
            }
            //计算由当前柱生成的矩形面积,更新最大面积
            for (int i = 0; i < s; i++)
            {
                curArea = height[i] * (r[i] - l[i] +1);
                maxArea = (maxArea > curArea) ? maxArea : curArea;
            }
    
            return maxArea;
        }
    }

    附:

    日常膜:http://www.cnblogs.com/lustralisk/p/branch-3.html

    生日快乐:http://blog.sina.com.cn/s/blog_1495db3970102w3f8.html

     

     

  • 相关阅读:
    Daily Scrum02 12.05
    Daily Scrum02 12.04
    用户调研报告
    Daily Scrum02 12.03
    Daily Scrum02 12.02
    Daily Scrum02 12.01
    Daily Scrum02 11.30
    软件工程项目组Z.XML会议记录 2013/11/27
    Daily Scrum02 11.29
    201509-3 模板生成系统
  • 原文地址:https://www.cnblogs.com/permitato/p/4959196.html
Copyright © 2011-2022 走看看