题目如下:(https://leetcode.com/problems/find-median-from-data-stream/)
Median is the middle value in an ordered integer list. If the size of the list is even, there is no middle value. So the median is the mean of the two middle value.
Examples:
[2,3,4]
, the median is 3
[2,3]
, the median is (2 + 3) / 2 = 2.5
Design a data structure that supports the following two operations:
- void addNum(int num) - Add a integer number from the data stream to the data structure.
- double findMedian() - Return the median of all elements so far.
题目需要实现两个函数:向一个整数表中添加元素以及找中位数。以下是两个思路:
思路一
如果用vector储存整数,找中位数较容易(O(1)),添加整数可能会较耗时间,于是尝试使用时间复杂度为O(log(n))的二分插入。
1 class MedianFinder { 2 public: 3 bool odd; //长度是否为奇数。奇数为true,偶数为false 4 int begin, end, mid; //数组头、尾、中间的下标 5 vector<int> l; //数组 6 7 MedianFinder(): odd(false), begin(0), end(0), mid(0) {} 8 9 //添加整数 10 void addNum(int num) { 11 //更新 12 odd = odd ? false : true; 13 begin = 0; 14 end = l.size() - 1; 15 //二分查找 16 while (begin <= end) 17 { 18 mid = (begin + end) / 2; 19 if (l[mid] == num) 20 { 21 break; 22 } 23 else if (l[mid] > num) 24 { 25 end = mid - 1; 26 } 27 else 28 { 29 begin = mid + 1; 30 } 31 } 32 //插入 33 if (begin > end) 34 { 35 l.insert(l.begin()+begin, num); 36 } 37 else 38 { 39 l.insert(l.begin()+mid, num); 40 } 41 } 42 43 //返回中位数 44 double findMedian() { 45 begin = 0; 46 end = l.size() - 1; 47 mid = (begin + end) / 2; 48 if (odd) 49 { 50 return l[mid]; 51 } 52 else 53 { 54 return ((double)l[mid] + l[mid+1]) / 2; 55 } 56 } 57 };
思路二
题目的提示说要用堆,于是考虑stl中的优先队列。可以将中位数两侧的数据分别储存至两个优先队列,一个整数大的优先级高(默认)(相当于排好序的大顶堆),另一个整数小的优先级高(相当于排好序的小顶堆)。
1 class MedianFinder { 2 public: 3 bool odd; //长度是否为奇数。奇数为true,偶数为false 4 priority_queue<int> front; //数组的前半部分,优先队列默认为较大的优先级高 5 priority_queue<int, vector<int>, greater<int>> back; //数组的后半部分,较小的数优先级高 6 7 MedianFinder(): odd(false) {} 8 9 //添加整数 10 void addNum(int num) { 11 //更新长度的状态 12 odd = odd ? false : true; 13 //插入num,并保证front长度不小于back长度 14 if (odd) 15 { 16 if (back.size() && num > back.top()) 17 { 18 back.push(num); 19 front.push(back.top()); 20 back.pop(); 21 } 22 else 23 { 24 front.push(num); 25 } 26 } 27 else 28 { 29 if (front.size() && num > front.top()) 30 { 31 back.push(num); 32 } 33 else 34 { 35 front.push(num); 36 back.push(front.top()); 37 front.pop(); 38 } 39 } 40 } 41 42 //返回中位数 43 double findMedian() { 44 if (odd) 45 { 46 return front.top(); 47 } 48 else 49 { 50 return ((double)front.top() + back.top()) / 2; 51 } 52 } 53 };
附:
//先留个坑,考完试再填吧……