zoukankan      html  css  js  c++  java
  • [jzoj]1229.Hanoi

    Link

      https://jzoj.net/senior/#main/show/1229

    Description

      Mpq 小时候只玩过俄罗斯方块这个经典的小游戏,当时他还不知道Hanoi 究竟是什么东西。话说当Mpq 第一次认识Hanoi 是在初三那年的联赛。由于Mpq 之前并不知道Hanoi 是什么东西,所以那一年他做完前三题之后很郁闷地坐了1 个半小时。。。好了,现在Mpq 成长了,他已经解决当年联赛那道Hanoi 了,在前几个月,他又发现一道关于Hanoi 的题目了,很幸运的是这个题目他知道怎么做了。。。然后为了让大家体验一下Mpq 初三联赛那种无奈的感觉,所以,这道题就神奇地出现在你们眼前。

      Task:赶快AC 这道题目,然后你就可以狂鄙视,甚至是无视Mpq 的存在了!!!   

      哎,吹着吹着发现我还没把题目写下来。。。。
      现在给你M 根柱子,初始的时候有N 个大小不一样的盘插在第一根柱子上面。同样地,规格大的盘子不能放在规格比它小的盘子上面。问最少需要多少次的移动才能将这N 个盘从第一根柱子移动到最后一根柱子上面?

    Solution

    30分

      因为m=3的情况的解是有规律可循的,所以输出2n-1即可

    100分

      对于完整一次的汉诺塔操作,显然一定会在第2~n-1中某一根柱子上,堆砌起一堆按顺序的盘子,然后再将原本在第一根柱子的盘子均摊到其他没有盘子的柱子处(均摊指每个位置,除了最先堆砌起来那堆盘子所在的柱子外,其他柱子都只有1个盘子,且最大的盘子在第n根柱子处),然后依次将刚才均摊的盘子,放到最后一个柱子,再把最先堆砌起的盘子,均摊,依次摆放到最后一根柱子上。想不懂可以看下图

      ①显然一定会在第2~n-1中某一根柱子上,堆砌起一堆按顺序的盘子


      ②然后再将原本在第一根柱子的盘子均摊到其他没有盘子的柱子处(均摊指每个位置,除了最先堆砌起来那堆盘子所在的柱子外,其他柱子都只有1个盘子,且最大的盘子在第n根柱子处)

      ③然后依次将刚才均摊的盘子,放到最后一个柱子

      ④再把最先堆砌起的盘子,均摊,依次摆放到最后一根柱子上

      我们设f[i,j]表示你用i个盘子,j根柱子做汉诺塔的最优方案。

      设g[i,j]表示你用i个盘子,j根柱子做汉诺塔的最优方案,是在第2~n-1中某一根柱子上,堆砌起g[i,j]个按大小顺序叠起来的盘子。

      那么,假设柱子相同,盘子不定,考虑每次放一个盘子上去,这样就有两种情况

      第一种:就是这个盘子放在大盘子处,也就是说,他在上面的①流程中,是没有操作的,那么,这时第一次堆砌起来的盘子数量,就是少一个盆子时堆砌的数量,是g[i-1,j]

      第二种,就是把这个盘子放在较小盘子处,就是在①流程中执行操作的盘子,换句话说,就是第一次堆砌的盘子其中一个,那么这就比少一个盘子时第一次堆砌的盘子数量多了1,就是g[i-1,j]+1

      我们设当前第一次挪出去的盘子有k个,k=g[i-1,j]~g[i-1,j]+1(上面说过),那么显然

      f[i,j]=min(f[k,j]+f[i-k,j-1]+f[k,j])

      f[k,j]表示你先把k个挪出去摆成一堆的最优解

      f[i-k,j-1]表示你把剩下的i-k个盘子,均摊后,再挪到最后一根柱子,相当于直接整个柱子的盘子移到最后一个柱子。这时因为第一次挪的盘子占了1根柱子,所以只剩下j-1根柱子

      最后的f[k,j]表示你第一次挪出去摆成一堆的盘子

      每次的g[i,j]为较优的k

      很成功,我们解完这道题目了,网上有很多关于汉诺塔的探究,不过都不是这种算法的,都是只能求固定柱子的最优解。希望这篇博客可以帮到大家。

    Code

    var
            n,m,i,j,k:longint;
            f,g:array[0..100000,0..10] of qword;
    begin
            readln(n,m);
    
            for i:=1 to 63 do
            begin
                    f[i,3]:=f[i-1,3]*2+1;
                    g[i,3]:=i-1;
            end;
    
            for i:=1 to n do
            begin
                    for j:=4 to m do
                            begin
                                    f[i,j]:=maxlongint*maxlongint;
                                    k:=g[i-1,j];
                                    if f[i,j]>f[k,j]*2+f[i-k,j-1] then
                                    begin
                                            f[i,j]:=f[k,j]*2+f[i-k,j-1];
                                            g[i,j]:=k;
                                    end;
    
                                    k:=g[i-1,j]+1;
                                    if f[i,j]>f[k,j]*2+f[i-k,j-1] then
                                    begin
                                            f[i,j]:=f[k,j]*2+f[i-k,j-1];
                                            g[i,j]:=k;
                                    end;
                            end;
            end;
    
            writeln(f[n,m]);
    end.
  • 相关阅读:
    java 冒泡排序算法
    题目: 2/1, 3/2, 5/3, 8/5, 13/8, 21 13 ...
    java-- 题目:有1、2、3、4个数字,能组成多少个互不相同且无重复数字的三位数?都是多少?
    java--输出一个菱形
    java --- 九九乘法表
    java--判断某一年是闰年还是平年
    去除inline-block元素间间距的N种方法
    IE8+兼容经验小结
    Javascript你必须要知道的面试题
    js几个经典的题目详解
  • 原文地址:https://www.cnblogs.com/philchieh/p/7340375.html
Copyright © 2011-2022 走看看