zoukankan      html  css  js  c++  java
  • bzoj3205

    和bzoj2595类似,也是斯坦纳树

    设f[l,r,]表示在点i机器人组合成了l-r最少推的次数,然后可得

    f[l,r,i]=min(f[l,m,i]+f[m+1,r,i])

    f[l,r,i]=min(f[l,r,j]+1) 点j能推到i

    但是这样做肯定会TLE,考虑两个优化

    首先,一开始其实有很多根本用不到,我们可以先从机器人初始位置搜下去,找到所有可以访问的点做dp即可

    其次,观察第二个方程,它的边权都是1,我们一定要用spfa转移吗?不,我们可以用直接宽搜

    具体的我们维护两个队列,第一个队列是初始的按从小到大排,新加入的点放在第二个队列,每次取两个队头小的那一个

    但我还是tle,求神犇指教

      1 const dx:array[1..4] of longint=(0,1,0,-1);
      2       dy:array[1..4] of longint=(1,0,-1,0);
      3       inf=1000000007;
      4 type node=record
      5        x,y:longint;
      6      end;
      7 
      8 var w:array[0..250010] of node;
      9     q1,q2,st:array[0..250010] of longint;
     10     po:array[0..501,0..501,1..4] of longint;
     11     f:array[0..250010,0..9,0..9] of longint;
     12     c:array[0..501,0..501] of char;
     13     v:array[0..250010] of boolean;
     14     loc:array[0..250010] of longint;
     15     next:array[0..250010,1..4] of longint;
     16     s:array[0..100010] of longint;
     17     mid,h1,t1,i,j,p,q,l,x,y,k,n,m,ans,mx,tot:longint;
     18 
     19 function min(a,b:longint):longint;
     20   begin
     21     if a>b then exit(b) else exit(a);
     22   end;
     23 
     24 function dfs(x,y,k:longint):longint;
     25   var xx,yy:longint;
     26   begin
     27     if (po[x,y,k]=0) then exit(-1);
     28     if po[x,y,k]>0 then exit(po[x,y,k]);
     29     po[x,y,k]:=0;
     30     xx:=x+dx[k];
     31     yy:=y+dy[k];
     32     if (xx<1) or (xx>n) or (yy<1) or (yy>m) or (c[xx,yy]='x') then po[x,y,k]:=(x-1)*m+y
     33     else if c[xx,yy]='A' then po[x,y,k]:=dfs(xx,yy,(k+2) mod 4+1)
     34     else if c[xx,yy]='C' then po[x,y,k]:=dfs(xx,yy,k mod 4+1)
     35     else po[x,y,k]:=dfs(xx,yy,k);
     36     exit(po[x,y,k]);
     37   end;
     38 
     39 function cmp(i,j,l,r:longint):boolean;
     40   begin
     41     exit(f[i,l,r]<f[j,l,r]);
     42   end;
     43 
     44 procedure sort(l,r:longint);
     45   var i:longint;
     46   begin
     47     for i:=1 to mx do
     48       inc(s[i],s[i-1]);
     49     for i:=t1 downto 1 do
     50     begin
     51       q1[s[f[st[i],l,r]]]:=st[i];
     52       dec(s[f[st[i],l,r]]);
     53     end;
     54   end;
     55 
     56 procedure bfs(l,r:longint);
     57   var h2,t2,i,x,y:longint;
     58   begin
     59     h2:=1;
     60     t2:=0;
     61     while (h2<=t2) or (h1<=t1) do
     62     begin
     63       if (h2>t2) or (h1<=t1) and cmp(q1[h1],q2[h2],l,r) then
     64       begin
     65         x:=q1[h1];
     66         inc(h1);
     67       end
     68       else begin
     69         x:=q2[h2];
     70         inc(h2);
     71       end;
     72       v[x]:=true;
     73       for i:=1 to 4 do
     74       begin
     75         if next[x,i]=0 then continue;
     76         y:=next[x,i];
     77         if not v[y] and (f[x,l,r]+1<f[y,l,r]) then
     78         begin
     79           v[y]:=true;
     80           f[y,l,r]:=f[x,l,r]+1;
     81           inc(t2);
     82           q2[t2]:=y;
     83         end;
     84       end;
     85     end;
     86   end;
     87 
     88 begin
     89   readln(k,m,n);
     90   for i:=1 to n*m do
     91     for p:=1 to k do
     92       for q:=1 to k do
     93         f[i,p,q]:=inf;
     94   for i:=1 to n do
     95   begin
     96     for j:=1 to m do
     97     begin
     98       read(c[i,j]);
     99       if (c[i,j]>='1') and (c[i,j]<='9') then
    100       begin
    101         x:=ord(c[i,j])-48;
    102         inc(t1);
    103         w[t1].x:=i; w[t1].y:=j;
    104         f[t1,x,x]:=0;
    105         loc[(i-1)*m+j]:=t1;
    106       end;
    107     end;
    108     readln;
    109   end;
    110   fillchar(po,sizeof(po),255);
    111   h1:=1;
    112   while h1<=t1 do
    113   begin
    114     x:=w[h1].x; y:=w[h1].y;
    115     for i:=1 to 4 do
    116     begin
    117       if po[x,y,i]=-1 then
    118       begin
    119         po[x,y,i]:=dfs(x,y,i);
    120         if (po[x,y,i]>0) and (loc[po[x,y,i]]=0) then
    121         begin
    122           inc(t1);
    123           w[t1].x:=(po[x,y,i]-1) div m+1;
    124           w[t1].y:=(po[x,y,i]-1) mod m+1;
    125           loc[po[x,y,i]]:=t1;
    126         end;
    127       end;
    128       if po[x,y,i]>0 then next[h1,i]:=loc[po[x,y,i]];
    129     end;
    130     inc(h1);
    131   end;
    132   tot:=t1;
    133   for l:=1 to k do
    134     for p:=1 to k-l+1 do
    135     begin
    136       q:=p+l-1;
    137       h1:=1; t1:=0; mx:=0;
    138       for i:=1 to tot do
    139       begin
    140         v[i]:=false;
    141         for mid:=p to q-1 do
    142           f[i,p,q]:=min(f[i,p,q],f[i,p,mid]+f[i,mid+1,q]);
    143         if f[i,p,q]<inf then
    144         begin
    145           inc(t1);
    146           st[t1]:=i;
    147           inc(s[f[i,p,q]]);
    148           if f[i,p,q]>mx then mx:=f[i,p,q];
    149         end;
    150       end;
    151       sort(p,q);
    152       for i:=0 to mx do
    153         s[i]:=0;
    154       bfs(p,q);
    155     end;
    156   ans:=inf;
    157   for i:=1 to tot do
    158     ans:=min(ans,f[i,1,k]);
    159   if ans>=inf then writeln(-1)
    160   else writeln(ans);     
    161 end.
    View Code
  • 相关阅读:
    Java中的流
    多种日志收集工具比较
    UML类图几种关系的总结
    从数组中找出第K大的数
    数组各种排序算法和复杂度分析
    时间复杂度和空间复杂度
    Java Classloader原理分析
    WebSocket
    TCP/IP详解--TCP连接中TIME_WAIT状态过多
    TCP协议
  • 原文地址:https://www.cnblogs.com/phile/p/4490647.html
Copyright © 2011-2022 走看看