zoukankan      html  css  js  c++  java
  • Ubuntu16.04+GTX2070+Driver418.43+CUDA10.1+cuDNN7.6

    最近需要用到一台服务器的GPU跑实验,其间 COLMAP 编译过程出错,提示 cuda 版本不支持,cmake虽然通过了,但其实没有找到支持的CUDA架构。

    cv@cv:~/mvs_project/colmap/build$ cmake ..
    ...
    -- Automatic GPU detection failed. Building for common architectures.
    -- Autodetected CUDA architecture(s): 3.0;3.5;5.0;5.2;6.0;6.1;7.0;7.0+PTX
    -- Enabling CUDA support (version: 9.0, archs: sm_30 sm_35 sm_50 sm_52 sm_60 sm_61 sm_70 compute_70)
    ...
    cv@cv:~/mvs_project/colmap/build$ make
    [  0%] Automatic rcc for target flann
    [  0%] Built target flann_automoc
    [  0%] Building CXX object lib/FLANN/CMakeFiles/flann.dir/flann.cpp.o
    [  0%] Building C object lib/FLANN/CMakeFiles/flann.dir/ext/lz4.c.o
    [  1%] Building C object lib/FLANN/CMakeFiles/flann.dir/ext/lz4hc.c.o
    [  1%] Linking CXX static library libflann.a
    [  1%] Built target flann
    [  1%] Automatic rcc for target graclus
    [  1%] Built target graclus_automoc
    [  1%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/util.c.o
    [  1%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/mincover.c.o
    [  3%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/kwayrefine.c.o
    [  3%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/refine.c.o
    [  3%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/ometis.c.o
    [  3%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/mmatch.c.o
    [  3%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/mutil.c.o
    [  3%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/mpmetis.c.o
    [  5%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/balance.c.o
    [  5%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/mfm2.c.o
    [  5%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/mesh.c.o
    [  5%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/compress.c.o
    [  5%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/initpart.c.o
    [  7%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/subdomains.c.o
    [  7%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/kwayvolfm.c.o
    [  7%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/fortran.c.o
    [  7%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/pmetis.c.o
    [  7%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/kwayfm.c.o
    [  9%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/parmetis.c.o
    [  9%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/coarsen.c.o
    [  9%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/mkwayfmh.c.o
    [  9%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/mbalance2.c.o
    [  9%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/mbalance.c.o
    [ 11%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/mmd.c.o
    [ 11%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/pqueue.c.o
    [ 11%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/estmem.c.o
    [ 11%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/myqsort.c.o
    [ 11%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/kvmetis.c.o
    [ 13%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/fm.c.o
    [ 13%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/ccgraph.c.o
    [ 13%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/minitpart2.c.o
    [ 13%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/bucketsort.c.o
    [ 13%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/graph.c.o
    [ 15%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/mrefine2.c.o
    [ 15%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/frename.c.o
    [ 15%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/stat.c.o
    [ 15%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/debug.c.o
    [ 15%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/srefine.c.o
    [ 17%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/meshpart.c.o
    [ 17%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/mrefine.c.o
    [ 17%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/kwayvolrefine.c.o
    [ 17%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/match.c.o
    [ 17%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/kmetis.c.o
    [ 19%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/mkwayrefine.c.o
    [ 19%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/metis.c.o
    [ 19%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/mcoarsen.c.o
    [ 19%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/timing.c.o
    [ 19%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/mfm.c.o
    [ 19%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/memory.c.o
    [ 21%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/minitpart.c.o
    [ 21%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/sfm.c.o
    [ 21%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/mkmetis.c.o
    [ 21%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/separator.c.o
    [ 21%] Building C object lib/Graclus/CMakeFiles/graclus.dir/multilevelLib/wkkm.c.o
    [ 23%] Building C object lib/Graclus/CMakeFiles/graclus.dir/multilevelLib/mlkkm.c.o
    [ 23%] Linking C static library libgraclus.a
    [ 23%] Built target graclus
    [ 25%] Automatic rcc for target lsd
    [ 25%] Built target lsd_automoc
    [ 25%] Building C object lib/LSD/CMakeFiles/lsd.dir/lsd.c.o
    [ 25%] Linking C static library liblsd.a
    [ 25%] Built target lsd
    [ 25%] Automatic rcc for target pba
    [ 25%] Built target pba_automoc
    [ 25%] Building NVCC (Device) object lib/PBA/CMakeFiles/pba.dir/pba_generated_ProgramCU.cu.o
    CMake Error at pba_generated_ProgramCU.cu.o.cmake:207 (message):
      Error generating
      /home/cv/mvs_project/colmap/build/lib/PBA/CMakeFiles/pba.dir//./pba_generated_ProgramCU.cu.o
    
    lib/PBA/CMakeFiles/pba.dir/build.make:63: recipe for target 'lib/PBA/CMakeFiles/pba.dir/pba_generated_ProgramCU.cu.o' failed
    make[2]: *** [lib/PBA/CMakeFiles/pba.dir/pba_generated_ProgramCU.cu.o] Error 1
    CMakeFiles/Makefile2:485: recipe for target 'lib/PBA/CMakeFiles/pba.dir/all' failed
    make[1]: *** [lib/PBA/CMakeFiles/pba.dir/all] Error 2
    Makefile:127: recipe for target 'all' failed
    make: *** [all] Error 2
    colmap_build_error

    于是又开始配置环境,首先根据自己机器配置NVIDIA官方网站下载 GeForce 驱动程序

    >> 检查机器环境及配置

    内核版本及操作系统信息

    cv@cv:~/mvs_project/colmap/build$ uname -r
    4.15.0-65-generic

    cv@cv:~/mvs_project/colmap/build$ lsb_release -a No LSB modules are available. Distributor ID: Ubuntu Description: Ubuntu 16.04.6 LTS Release: 16.04 Codename: xenial cv@cv:~/mvs_project/colmap/build$ gcc --version gcc (Ubuntu 5.4.0-6ubuntu1~16.04.12) 5.4.0 20160609 Copyright (C) 2015 Free Software Foundation, Inc. This is free software; see the source for copying conditions. There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

    已经安装过显卡驱动的机器可以直接通过 nvidia-smi 命令显示显卡型号和驱动版本信息

    cv@cv:~/mvs_project/colmap/build$ nvidia-smi
    Sat Nov 30 10:49:14 2019
    +-----------------------------------------------------------------------------+
    | NVIDIA-SMI 418.43       Driver Version: 418.43       CUDA Version: 10.1     |
    |-------------------------------+----------------------+----------------------+
    | GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
    | Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
    |===============================+======================+======================|
    |   0  GeForce RTX 2070    Off  | 00000000:01:00.0 Off |                  N/A |
    |  0%   65C    P0     1W / 210W |      0MiB /  7952MiB |      0%      Default |
    +-------------------------------+----------------------+----------------------+
    
    +-----------------------------------------------------------------------------+
    | Processes:                                                       GPU Memory |
    |  GPU       PID   Type   Process name                             Usage      |
    |=============================================================================|
    |  No running processes found                                                 |
    +-----------------------------------------------------------------------------+

    对尚未安装过显卡驱动的机器,可以通过 lspci 指令查询,grep -i 的意思是忽略后面匹配项的大小写

    cv@cv:~/mvs_project/colmap/build$ lspci | grep -i vga | grep -i nvidia
    01:00.0 VGA compatible controller: NVIDIA Corporation Device 1f07 (rev a1)

    这里返回的是一串十六进制代码 1f07,跟我们平常所见略有不同,需要翻译一下,到 PCI devices 查询。打不开网页或者打开很慢的可以参考放在GitHub上的一份常见型号对应表

    知道了自己的机器的配置就可以到上面给出的网站(https://www.geforce.cn/drivers)下载对应的驱动程序。

    开始安装驱动之前的准备工作

    >> 卸载旧版本或安装失败的驱动

    cv@cv:~/mvs_project/colmap/build$ cd
    cv@cv:~$ sudo ./NVIDIA-Linux-x86_64-418.43.run --uninstall

    >> 安装可能需要的依赖

    cv@cv:~$ sudo apt update
    cv@cv:~$ sudo apt install dkms build-essential linux-headers-generic
    cv@cv:~$ sudo apt install gcc-multilib xorg-dev
    cv@cv:~$ sudo apt install freeglut3-dev libx11-dev libxmu-dev libxi-dev
    cv@cv:~$ sudo apt install libgl1-mesa-glx libglu1-mesa libglu1-mesa-dev

    >> 禁用 NOUVEAU 驱动

    直接使用 VIM 打开,没有该文件时自动新建

    cv@cv:~$ sudo vim /etc/modprobe.d/blacklist-nouveau.conf

    在文件中添加如下内容,保存退出

    blacklist nouveau
    blacklist lbm-nouveau
    options nouveau modeset=0
    alias nouveau off
    alias lbm-nouveau off

    然后执行下面的指令,禁用 nouveau 内核模块,更新配置,重启

    cv@cv:~$ echo options nouveau modeset=0 | sudo tee -a /etc/modprobe.d/nouveau-kms.conf
    cv@cv:~$ sudo update-initramfs -u
    cv@cv:~$ sudo reboot

    CTRL+ALT+F1 进入命令行模式,输入下面的命令,如果没有任何显示则表明禁用驱动成功了。然后关闭图形界面,后面要记得重新打开。

    cv@cv:~$ lsmod | grep nouveau
    cv@cv:~$ sudo service lightdm stop

    然后开始安装显卡驱动

    cv@cv:~$ chmod a+x NVIDIA-Linux-x86_64-418.43.run
    cv@cv:~$ sudo ./NVIDIA-Linux-x86_64-418.43.run --dkms --no-opengl-files

    -dkms  默认开启。在 kernel 自行更新时将驱动程序安装至模块中,从而阻止驱动程序重新安装。

    –no-opengl-files  表示只安装驱动文件,不安装OpenGL文件。这个参数不可省略,否则会导致登陆界面死循环。因为NVIDIA的驱动默认会安装OpenGL,而Ubuntu的内核本身也有OpenGL且与GUI显示息息相关,

      一旦NVIDIA的驱动覆盖了OpenGL,在GUI需要动态链接OpenGL库的时候就会出现问题。

    –no-x-check  表示安装驱动时不检查X服务,非必需,已经禁用图形界面。

    –no-nouveau-check  表示安装驱动时不检查nouveau,非必需,已经禁用nouveau驱动。

    –disable-nouveau  禁用nouveau。非必需,因为之前已经手动禁用了nouveau。

    安装过程中弹出pre-install script failed的信息,继续安装即可,没有影响。

    dkms 选项选yes

    32位兼容 选项选yes

    x-org 选项保持默认选no

    安装完成后打开图形桌面。

    cv@cv:~$ sudo service lightdm start
    cv@cv:~$ nvidia-smi

    如果有显示GPU相关信息表示驱动安装成功。

    卸载CUDA

    首先卸载以前安装的或安装失败的CUDA,以便我们顺利进行下面的步骤,直接执行CUDA自带的卸载脚本。

    cv@cv:~$ sudo /usr/local/cuda-9.0/bin/uninstall_cuda_9.0.pl

    卸载完成后,清除残留文件夹。

    cv@cv:~$ sudo rm -rf /usr/local/cuda-9.0/

    安装CUDA和CUDNN

    >> 首先下载安装文件,我们要安装的是CUDA10.1和CUDNN7.6

    根据对应关系到 CUDA 下载页面寻找自己需要的版本,比如我下载的是 CUDA Toolkit 10.1 update2,选择好操作系统,系统架构和安装类型之后下载即可。

     CUDA Toolkit Archive 网站上下载

    cuda_10.1.243_418.87.00_linux.run

    然后下载CUDNN,需要注册或登录NVIDIA账号,看清楚版本,到 cuDNN Download 网站上 for CUDA 10.1 下载里面的三个deb安装包

    libcudnn7_7.6.5.32-1+cuda10.1_amd64.deb

    libcudnn7-dev_7.6.5.32-1+cuda10.1_amd64.deb

    libcudnn7-doc_7.6.5.32-1+cuda10.1_amd64.deb

    >> 然后开始安装 CUDA

    cv@cv:~$ sudo service lightdm stop
    cv@cv:~$ chmod a+x cuda_10.1.243_418.87.00_linux.run
    cv@cv:~$ sudo ./cuda_10.1.243_418.87.00_linux.run

    是否同意条款 accept

    选择安装界面,除了418.87取消勾选之外其他保持默认

    剩下的都保持默认即可

    然后打开配置文件,并在末尾添加链接路径,保存退出

    cv@cv:~$ vim ~/.bashrc
    export PATH=/usr/local/cuda-10.1/bin:$PATH
    export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH

    使生效

    cv@cv:~$ source ~/.bashrc

    这是应该已经可以查看CUDA安装版本了

    cv@cv:~$ nvcc --version
    nvcc: NVIDIA (R) Cuda compiler driver
    Copyright (c) 20xx-20xx NVIDIA Corporation
    Built on Tue_Jan_10_13:22:03_CST_20xx
    Cuda compilation tools, release 10.1, V10.1.x

    >> 接着安装 cuDNN

    cv@cv:~$ sudo dpkg -i libcudnn7_7.6.5.32-1+cuda10.1_amd64.deb
    cv@cv:~$ sudo dpkg -i libcudnn7-dev_7.6.5.32-1+cuda10.1_amd64.deb
    cv@cv:~$ sudo dpkg -i libcudnn7-doc_7.6.5.32-1+cuda10.1_amd64.deb

    >> 打开图形界面

    cv@cv:~$ sudo service lightdm start

    验证安装是否成功

    >> CUDA 测试,进入到 CUDA 例程路径下,编译并测试

    cv@cv:~$ cd NVIDIA_CUDA-10.1_Samples/
    cv@cv:~/NVIDIA_CUDA-10.1_Samples$ make
    cv@cv:~/NVIDIA_CUDA-10.1_Samples$ cd bin/x86_64/linux/release/
    cv@cv:~/NVIDIA_CUDA-10.1_Samples/bin/x86_64/linux/release$ ./deviceQuery
    ./deviceQuery Starting...
    
     CUDA Device Query (Runtime API) version (CUDART static linking)
    
    Detected 1 CUDA Capable device(s)
    
    Device 0: "GeForce RTX 2070"
      CUDA Driver Version / Runtime Version          10.1 / 10.1
      CUDA Capability Major/Minor version number:    7.5
      Total amount of global memory:                 7952 MBytes (8338604032 bytes)
      (36) Multiprocessors, ( 64) CUDA Cores/MP:     2304 CUDA Cores
      GPU Max Clock rate:                            1710 MHz (1.71 GHz)
      Memory Clock rate:                             7001 Mhz
      Memory Bus Width:                              256-bit
      L2 Cache Size:                                 4194304 bytes
      Maximum Texture Dimension Size (x,y,z)         1D=(131072), 2D=(131072, 65536), 3D=(16384, 16384, 16384)
      Maximum Layered 1D Texture Size, (num) layers  1D=(32768), 2048 layers
      Maximum Layered 2D Texture Size, (num) layers  2D=(32768, 32768), 2048 layers
      Total amount of constant memory:               65536 bytes
      Total amount of shared memory per block:       49152 bytes
      Total number of registers available per block: 65536
      Warp size:                                     32
      Maximum number of threads per multiprocessor:  1024
      Maximum number of threads per block:           1024
      Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
      Max dimension size of a grid size    (x,y,z): (2147483647, 65535, 65535)
      Maximum memory pitch:                          2147483647 bytes
      Texture alignment:                             512 bytes
      Concurrent copy and kernel execution:          Yes with 3 copy engine(s)
      Run time limit on kernels:                     No
      Integrated GPU sharing Host Memory:            No
      Support host page-locked memory mapping:       Yes
      Alignment requirement for Surfaces:            Yes
      Device has ECC support:                        Disabled
      Device supports Unified Addressing (UVA):      Yes
      Device supports Compute Preemption:            Yes
      Supports Cooperative Kernel Launch:            Yes
      Supports MultiDevice Co-op Kernel Launch:      Yes
      Device PCI Domain ID / Bus ID / location ID:   0 / 1 / 0
      Compute Mode:
         < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >
    
    deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 10.1, CUDA Runtime Version = 10.1, NumDevs = 1
    Result = PASS
    cv@cv:~/NVIDIA_CUDA-10.1_Samples/bin/x86_64/linux/release$ ./bandwidthTest
    [CUDA Bandwidth Test] - Starting...
    Running on...
    
     Device 0: GeForce RTX 2070
     Quick Mode
    
     Host to Device Bandwidth, 1 Device(s)
     PINNED Memory Transfers
       Transfer Size (Bytes)        Bandwidth(GB/s)
       32000000                     12.8
    
     Device to Host Bandwidth, 1 Device(s)
     PINNED Memory Transfers
       Transfer Size (Bytes)        Bandwidth(GB/s)
       32000000                     13.1
    
     Device to Device Bandwidth, 1 Device(s)
     PINNED Memory Transfers
       Transfer Size (Bytes)        Bandwidth(GB/s)
       32000000                     382.0
    
    Result = PASS
    
    NOTE: The CUDA Samples are not meant for performance measurements. Results may vary when GPU Boost is enabled.

    >> cuDNN 测试

    cv@cv:~$ cat /usr/include/cudnn.h | grep CUDNN_MAJOR -A 2 -m 1
    #define CUDNN_MAJOR 7
    #define CUDNN_MINOR 6
    #define CUDNN_PATCHLEVEL 5
    cv@cv:~$ cp -r /usr/src/cudnn_samples_v7/ .
    cv@cv:~$ cd cudnn_samples_v7/mnistCUDNN/
    cv@cv:~$ make
    Linking agains cublasLt = true
    CUDA VERSION: 10010
    TARGET ARCH: x86_64
    HOST_ARCH: x86_64
    TARGET OS: linux
    SMS: 30 35 50 53 60 61 62 70 72 75
    /usr/local/cuda/bin/nvcc -ccbin g++ -I/usr/local/cuda/include -I/usr/local/cuda/include -IFreeImage/include -m64
    -gencode arch=compute_30,code=sm_30 -gencode arch=compute_35,code=sm_35 -gencode arch=compute_50,code=sm_50
    -gencode arch=compute_53,code=sm_53 -gencode arch=compute_60,code=sm_60 -gencode arch=compute_61,code=sm_61
    -gencode arch=compute_62,code=sm_62 -gencode arch=compute_70,code=sm_70 -gencode arch=compute_72,code=sm_72
    -gencode arch=compute_75,code=sm_75 -gencode arch=compute_75,code=compute_75 -o fp16_dev.o -c fp16_dev.cu
    g++ -I/usr/local/cuda/include -I/usr/local/cuda/include -IFreeImage/include   -o fp16_emu.o -c fp16_emu.cpp
    g++ -I/usr/local/cuda/include -I/usr/local/cuda/include -IFreeImage/include   -o mnistCUDNN.o -c mnistCUDNN.cpp
    /usr/local/cuda/bin/nvcc -ccbin g++   -m64
    -gencode arch=compute_30,code=sm_30 -gencode arch=compute_35,code=sm_35 -gencode arch=compute_50,code=sm_50
    -gencode arch=compute_53,code=sm_53 -gencode arch=compute_60,code=sm_60 -gencode arch=compute_61,code=sm_61
    -gencode arch=compute_62,code=sm_62 -gencode arch=compute_70,code=sm_70 -gencode arch=compute_72,code=sm_72
    -gencode arch=compute_75,code=sm_75 -gencode arch=compute_75,code=compute_75 -o mnistCUDNN fp16_dev.o fp16_emu.o mnistCUDNN.o
    -I/usr/local/cuda/include -I/usr/local/cuda/include -IFreeImage/include
    -L/usr/local/cuda/lib64 -L/usr/local/cuda/lib64 -lcublasLt -LFreeImage/lib/linux/x86_64
    -LFreeImage/lib/linux -lcudart -lcublas -lcudnn -lfreeimage -lstdc++ -lm
    cv@cv:~/cudnn_samples_v7/mnistCUDNN$ ./mnistCUDNN
    cudnnGetVersion() : 7605 , CUDNN_VERSION from cudnn.h : 7605 (7.6.5)
    Host compiler version : GCC 5.4.0
    There are 1 CUDA capable devices on your machine :
    device 0 : sms 36  Capabilities 7.5, SmClock 1710.0 Mhz, MemSize (Mb) 7952, MemClock 7001.0 Mhz, Ecc=0, boardGroupID=0
    Using device 0
    
    Testing single precision
    Loading image data/one_28x28.pgm
    Performing forward propagation ...
    Testing cudnnGetConvolutionForwardAlgorithm ...
    Fastest algorithm is Algo 0
    Testing cudnnFindConvolutionForwardAlgorithm ...
    ^^^^ CUDNN_STATUS_SUCCESS for Algo 0: 0.039040 time requiring 0 memory
    ^^^^ CUDNN_STATUS_SUCCESS for Algo 1: 0.100576 time requiring 3464 memory
    ^^^^ CUDNN_STATUS_SUCCESS for Algo 7: 0.122400 time requiring 2057744 memory
    ^^^^ CUDNN_STATUS_SUCCESS for Algo 5: 0.130560 time requiring 203008 memory
    ^^^^ CUDNN_STATUS_SUCCESS for Algo 2: 0.173888 time requiring 57600 memory
    Resulting weights from Softmax:
    0.0000000 0.9999399 0.0000000 0.0000000 0.0000561 0.0000000 0.0000012 0.0000017 0.0000010 0.0000000
    Loading image data/three_28x28.pgm
    Performing forward propagation ...
    Resulting weights from Softmax:
    0.0000000 0.0000000 0.0000000 0.9999288 0.0000000 0.0000711 0.0000000 0.0000000 0.0000000 0.0000000
    Loading image data/five_28x28.pgm
    Performing forward propagation ...
    Resulting weights from Softmax:
    0.0000000 0.0000008 0.0000000 0.0000002 0.0000000 0.9999820 0.0000154 0.0000000 0.0000012 0.0000006
    
    Result of classification: 1 3 5
    
    Test passed!
    
    Testing half precision (math in single precision)
    Loading image data/one_28x28.pgm
    Performing forward propagation ...
    Testing cudnnGetConvolutionForwardAlgorithm ...
    Fastest algorithm is Algo 0
    Testing cudnnFindConvolutionForwardAlgorithm ...
    ^^^^ CUDNN_STATUS_SUCCESS for Algo 0: 0.022528 time requiring 0 memory
    ^^^^ CUDNN_STATUS_SUCCESS for Algo 1: 0.061344 time requiring 3464 memory
    ^^^^ CUDNN_STATUS_SUCCESS for Algo 2: 0.065536 time requiring 28800 memory
    ^^^^ CUDNN_STATUS_SUCCESS for Algo 5: 0.070208 time requiring 203008 memory
    ^^^^ CUDNN_STATUS_SUCCESS for Algo 4: 0.082592 time requiring 207360 memory
    Resulting weights from Softmax:
    0.0000001 1.0000000 0.0000001 0.0000000 0.0000563 0.0000001 0.0000012 0.0000017 0.0000010 0.0000001
    Loading image data/three_28x28.pgm
    Performing forward propagation ...
    Resulting weights from Softmax:
    0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000714 0.0000000 0.0000000 0.0000000 0.0000000
    Loading image data/five_28x28.pgm
    Performing forward propagation ...
    Resulting weights from Softmax:
    0.0000000 0.0000008 0.0000000 0.0000002 0.0000000 1.0000000 0.0000154 0.0000000 0.0000012 0.0000006
    
    Result of classification: 1 3 5
    
    Test passed!

    当这些配置好之后,COLMAP 的编译就很顺利地通过了。

    cv@cv:~/mvs_project/colmap/build$ cmake ..
    -- The C compiler identification is GNU 5.4.0
    -- The CXX compiler identification is GNU 5.4.0
    -- Check for working C compiler: /usr/bin/cc
    -- Check for working C compiler: /usr/bin/cc -- works
    -- Detecting C compiler ABI info
    -- Detecting C compiler ABI info - done
    -- Detecting C compile features
    -- Detecting C compile features - done
    -- Check for working CXX compiler: /usr/bin/c++
    -- Check for working CXX compiler: /usr/bin/c++ -- works
    -- Detecting CXX compiler ABI info
    -- Detecting CXX compiler ABI info - done
    -- Detecting CXX compile features
    -- Detecting CXX compile features - done
    -- Found installed version of Eigen: /usr/lib/cmake/eigen3
    -- Found required Ceres dependency: Eigen version 3.2.92 in /usr/include/eigen3
    -- Found required Ceres dependency: glog
    -- Performing Test GFLAGS_IN_GOOGLE_NAMESPACE
    -- Performing Test GFLAGS_IN_GOOGLE_NAMESPACE - Success
    -- Found required Ceres dependency: gflags
    -- Found Ceres version: 1.14.0 installed in: /usr/local with components: [EigenSparse, SparseLinearAlgebraLibrary, LAPACK, SuiteSparse, CXSparse, SchurSpecializations, OpenMP, Multithreading]
    -- Boost version: 1.58.0
    -- Found the following Boost libraries:
    --   program_options
    --   filesystem
    --   graph
    --   regex
    --   system
    --   unit_test_framework
    -- Found Eigen3: /usr/include/eigen3 (Required is at least version "2.91.0")
    -- Found Eigen
    --   Includes : /usr/include/eigen3
    -- Found FreeImage
    --   Includes : /usr/include
    --   Libraries : /usr/lib/x86_64-linux-gnu/libfreeimage.so
    -- Found Glog
    --   Includes : /usr/include
    --   Libraries : /usr/lib/x86_64-linux-gnu/libglog.so
    -- Found OpenGL: /usr/lib/x86_64-linux-gnu/libGL.so
    -- Found Glew
    --   Includes : /usr/include
    --   Libraries : /usr/lib/x86_64-linux-gnu/libGLEW.so
    -- Found Git: /usr/bin/git (found version "2.7.4")
    -- Found Threads: TRUE
    -- Found Qt
    --   Module : /usr/lib/x86_64-linux-gnu/cmake/Qt5Core
    --   Module : /usr/lib/x86_64-linux-gnu/cmake/Qt5OpenGL
    --   Module : /usr/lib/x86_64-linux-gnu/cmake/Qt5Widgets
    -- Found CGAL
    --   Includes : /usr/include
    --   Libraries : /usr/lib/x86_64-linux-gnu/libCGAL.so.11.0.1
    -- Build type not specified, using Release
    -- Enabling SIMD support
    -- Enabling OpenMP support
    -- Disabling interprocedural optimization
    -- Autodetected CUDA architecture(s):  7.5
    -- Enabling CUDA support (version: 10.1, archs: sm_75)
    -- Enabling OpenGL support
    -- Disabling profiling support
    -- Enabling CGAL support
    -- Configuring done
    -- Generating done
    -- Build files have been written to: /home/cv/mvs_project/colmap/build
    
    cv@cv:~/mvs_project/colmap/build$ make
    Scanning dependencies of target flann_automoc
    [  0%] Automatic rcc for target flann
    [  0%] Built target flann_automoc
    Scanning dependencies of target flann
    [  0%] Building CXX object lib/FLANN/CMakeFiles/flann.dir/flann.cpp.o
    [  0%] Building C object lib/FLANN/CMakeFiles/flann.dir/ext/lz4.c.o
    [  1%] Building C object lib/FLANN/CMakeFiles/flann.dir/ext/lz4hc.c.o
    [  1%] Linking CXX static library libflann.a
    [  1%] Built target flann
    Scanning dependencies of target graclus_automoc
    [  1%] Automatic rcc for target graclus
    [  1%] Built target graclus_automoc
    Scanning dependencies of target graclus
    [  1%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/util.c.o
    [  1%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/mincover.c.o
    [  3%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/kwayrefine.c.o
    [  3%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/refine.c.o
    [  3%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/ometis.c.o
    [  3%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/mmatch.c.o
    [  3%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/mutil.c.o
    [  3%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/mpmetis.c.o
    [  5%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/balance.c.o
    [  5%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/mfm2.c.o
    [  5%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/mesh.c.o
    [  5%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/compress.c.o
    [  5%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/initpart.c.o
    [  7%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/subdomains.c.o
    [  7%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/kwayvolfm.c.o
    [  7%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/fortran.c.o
    [  7%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/pmetis.c.o
    [  7%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/kwayfm.c.o
    [  9%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/parmetis.c.o
    [  9%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/coarsen.c.o
    [  9%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/mkwayfmh.c.o
    [  9%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/mbalance2.c.o
    [  9%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/mbalance.c.o
    [ 11%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/mmd.c.o
    [ 11%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/pqueue.c.o
    [ 11%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/estmem.c.o
    [ 11%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/myqsort.c.o
    [ 11%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/kvmetis.c.o
    [ 13%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/fm.c.o
    [ 13%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/ccgraph.c.o
    [ 13%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/minitpart2.c.o
    [ 13%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/bucketsort.c.o
    [ 13%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/graph.c.o
    [ 15%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/mrefine2.c.o
    [ 15%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/frename.c.o
    [ 15%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/stat.c.o
    [ 15%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/debug.c.o
    [ 15%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/srefine.c.o
    [ 17%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/meshpart.c.o
    [ 17%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/mrefine.c.o
    [ 17%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/kwayvolrefine.c.o
    [ 17%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/match.c.o
    [ 17%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/kmetis.c.o
    [ 19%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/mkwayrefine.c.o
    [ 19%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/metis.c.o
    [ 19%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/mcoarsen.c.o
    [ 19%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/timing.c.o
    [ 19%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/mfm.c.o
    [ 19%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/memory.c.o
    [ 21%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/minitpart.c.o
    [ 21%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/sfm.c.o
    [ 21%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/mkmetis.c.o
    [ 21%] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/separator.c.o
    [ 21%] Building C object lib/Graclus/CMakeFiles/graclus.dir/multilevelLib/wkkm.c.o
    [ 23%] Building C object lib/Graclus/CMakeFiles/graclus.dir/multilevelLib/mlkkm.c.o
    [ 23%] Linking C static library libgraclus.a
    [ 23%] Built target graclus
    Scanning dependencies of target lsd_automoc
    [ 25%] Automatic rcc for target lsd
    [ 25%] Built target lsd_automoc
    Scanning dependencies of target lsd
    [ 25%] Building C object lib/LSD/CMakeFiles/lsd.dir/lsd.c.o
    [ 25%] Linking C static library liblsd.a
    [ 25%] Built target lsd
    Scanning dependencies of target pba_automoc
    [ 25%] Automatic rcc for target pba
    [ 25%] Built target pba_automoc
    [ 25%] Building NVCC (Device) object lib/PBA/CMakeFiles/pba.dir/pba_generated_ProgramCU.cu.o
    Scanning dependencies of target pba
    [ 25%] Building CXX object lib/PBA/CMakeFiles/pba.dir/ConfigBA.cpp.o
    [ 25%] Building CXX object lib/PBA/CMakeFiles/pba.dir/CuTexImage.cpp.o
    [ 25%] Building CXX object lib/PBA/CMakeFiles/pba.dir/pba.cpp.o
    [ 27%] Building CXX object lib/PBA/CMakeFiles/pba.dir/SparseBundleCPU.cpp.o
    [ 27%] Building CXX object lib/PBA/CMakeFiles/pba.dir/SparseBundleCU.cpp.o
    [ 27%] Linking CXX static library libpba.a
    [ 27%] Built target pba
    Scanning dependencies of target poisson_recon_automoc
    [ 27%] Automatic rcc for target poisson_recon
    [ 27%] Built target poisson_recon_automoc
    Scanning dependencies of target poisson_recon
    [ 27%] Building CXX object lib/PoissonRecon/CMakeFiles/poisson_recon.dir/CmdLineParser.cpp.o
    [ 29%] Building CXX object lib/PoissonRecon/CMakeFiles/poisson_recon.dir/Factor.cpp.o
    [ 29%] Building CXX object lib/PoissonRecon/CMakeFiles/poisson_recon.dir/Geometry.cpp.o
    [ 29%] Building CXX object lib/PoissonRecon/CMakeFiles/poisson_recon.dir/MarchingCubes.cpp.o
    [ 29%] Building CXX object lib/PoissonRecon/CMakeFiles/poisson_recon.dir/PlyFile.cpp.o
    [ 29%] Building CXX object lib/PoissonRecon/CMakeFiles/poisson_recon.dir/PoissonRecon.cpp.o
    [ 31%] Building CXX object lib/PoissonRecon/CMakeFiles/poisson_recon.dir/SurfaceTrimmer.cpp.o
    [ 31%] Linking CXX static library libpoisson_recon.a
    [ 31%] Built target poisson_recon
    Scanning dependencies of target sift_gpu_automoc
    [ 31%] Automatic rcc for target sift_gpu
    [ 31%] Built target sift_gpu_automoc
    [ 31%] Building NVCC (Device) object lib/SiftGPU/CMakeFiles/sift_gpu.dir/sift_gpu_generated_ProgramCU.cu.o
    Scanning dependencies of target sift_gpu
    [ 31%] Building CXX object lib/SiftGPU/CMakeFiles/sift_gpu.dir/FrameBufferObject.cpp.o
    [ 33%] Building CXX object lib/SiftGPU/CMakeFiles/sift_gpu.dir/GlobalUtil.cpp.o
    [ 33%] Building CXX object lib/SiftGPU/CMakeFiles/sift_gpu.dir/GLTexImage.cpp.o
    [ 33%] Building CXX object lib/SiftGPU/CMakeFiles/sift_gpu.dir/ProgramGLSL.cpp.o
    [ 33%] Building CXX object lib/SiftGPU/CMakeFiles/sift_gpu.dir/PyramidGL.cpp.o
    [ 33%] Building CXX object lib/SiftGPU/CMakeFiles/sift_gpu.dir/ShaderMan.cpp.o
    [ 35%] Building CXX object lib/SiftGPU/CMakeFiles/sift_gpu.dir/SiftGPU.cpp.o
    [ 35%] Building CXX object lib/SiftGPU/CMakeFiles/sift_gpu.dir/SiftMatch.cpp.o
    [ 35%] Building CXX object lib/SiftGPU/CMakeFiles/sift_gpu.dir/SiftPyramid.cpp.o
    [ 35%] Building CXX object lib/SiftGPU/CMakeFiles/sift_gpu.dir/CuTexImage.cpp.o
    [ 35%] Building CXX object lib/SiftGPU/CMakeFiles/sift_gpu.dir/PyramidCU.cpp.o
    [ 35%] Building CXX object lib/SiftGPU/CMakeFiles/sift_gpu.dir/SiftMatchCU.cpp.o
    [ 37%] Linking CXX static library libsift_gpu.a
    [ 37%] Built target sift_gpu
    Scanning dependencies of target sqlite3_automoc
    [ 37%] Automatic rcc for target sqlite3
    [ 37%] Built target sqlite3_automoc
    Scanning dependencies of target sqlite3
    [ 37%] Building C object lib/SQLite/CMakeFiles/sqlite3.dir/sqlite3.c.o
    [ 37%] Linking C static library libsqlite3.a
    [ 37%] Built target sqlite3
    Scanning dependencies of target vlfeat_automoc
    [ 39%] Automatic rcc for target vlfeat
    [ 39%] Built target vlfeat_automoc
    ...
    colmap_build

    参考资料

    [1] NVIDIA DEVELOPER

    [2] CUDA TOOLKIT DOCUMENTATION

    [3] Linux(Ubuntu)系统查看显卡型号

    [4] 最全面解析 Ubuntu 16.04 安装nvidia驱动 以及各种错误

    [5] Ubuntu安装和卸载CUDA和CUDNN

    [6] Ubuntu server16.04安装配置驱动418.87、cuda10.1、cudnn7.6.4.38、anaconda、pytorch超详细解决

    [7] Ubuntu 16.04 安装 CUDA10.1 (解决循环登陆的问题)

    [8] 【目标检测】Ubuntu16.04+RTX2070+CUDA10.0+pytorch1.1搭建CenterNet环境

  • 相关阅读:
    JS获取今天的日期
    领域模型vs数据模型,应该怎么用?
    如何让技术想法更容易被理解?
    如何做好技术 Team Leader
    回归分析中常见的“门槛模型”!
    有了数据湖,距离数据仓库消失还有几年?
    数据治理 VS 公司治理、IT治理、数仓治理
    Sentence-seven basic patterns 英语句子结构
    VM的Linux CentOS系统的VMTools的手动安装
    linux下IPTABLES配置详解
  • 原文地址:https://www.cnblogs.com/phillee/p/11962283.html
Copyright © 2011-2022 走看看