zoukankan      html  css  js  c++  java
  • 实验三 朴素贝叶斯算法及应用

    博客班级 班级链接
    作业要求 作业要求链接
    学号 3180701115

    一、实验目的

    1.理解朴素贝叶斯算法原理,掌握朴素贝叶斯算法框架;
    2.掌握常见的高斯模型,多项式模型和伯努利模型;
    3.能根据不同的数据类型,选择不同的概率模型实现朴素贝叶斯算法;
    4.针对特定应用场景及数据,能应用朴素贝叶斯解决实际问题。

    二、实验内容

    实现高斯朴素贝叶斯算法。
    1.熟悉sklearn库中的朴素贝叶斯算法;
    2.针对iris数据集,应用sklearn的朴素贝叶斯算法进行类别预测。
    3.针对iris数据集,利用自编朴素贝叶斯算法进行类别预测。

    三、实验报告要求

    1.对照实验内容,撰写实验过程、算法及测试结果;
    2.代码规范化:命名规则、注释;
    3.分析核心算法的复杂度;
    4.查阅文献,讨论各种朴素贝叶斯算法的应用场景;
    5.讨论朴素贝叶斯算法的优缺点。

    四、实验代码

    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    %matplotlib inline
    from sklearn.datasets import load_iris
    from sklearn.model_selection import train_test_split
    from collections import Counter
    import math
    
    # data
    def create_data():
        iris = load_iris()
        df = pd.DataFrame(iris.data, columns=iris.feature_names)
        df['label'] = iris.target
        df.columns = [
            'sepal length', 'sepal width', 'petal length', 'petal width', 'label'
        ]
        data = np.array(df.iloc[:100, :])
        # print(data)
        return data[:, :-1], data[:, -1]
    
    X, y = create_data()
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
    
    X_test[0], y_test[0]
    
    class NaiveBayes:
        def __init__(self):
            self.model = None
        # 数学期望
        @staticmethod
        def mean(X):
            return sum(X) / float(len(X))
        # 标准差(方差)
        def stdev(self, X):
            avg = self.mean(X)
            return math.sqrt(sum([pow(x - avg, 2) for x in X]) / float(len(X)))
        # 概率密度函数
        def gaussian_probability(self, x, mean, stdev):
            exponent = math.exp(-(math.pow(x - mean, 2) /
                                  (2 * math.pow(stdev, 2))))
            return (1 / (math.sqrt(2 * math.pi) * stdev)) * exponent
        # 处理X_train
        def summarize(self, train_data):
            summaries = [(self.mean(i), self.stdev(i)) for i in zip(*train_data)]
            return summaries
        # 分类别求出数学期望和标准差
        def fit(self, X, y):
            labels = list(set(y))
            data = {label: [] for label in labels}
            for f, label in zip(X, y):
                data[label].append(f)
            self.model = {
                label: self.summarize(value)
                for label, value in data.items()
            }
            return 'gaussianNB train done!'
        # 计算概率
        def calculate_probabilities(self, input_data):
            # summaries:{0.0: [(5.0, 0.37),(3.42, 0.40)], 1.0: [(5.8, 0.449),(2.7, 0.27)]}
            # input_data:[1.1, 2.2]
            probabilities = {}
            for label, value in self.model.items():
                probabilities[label] = 1
                for i in range(len(value)):
                    mean, stdev = value[i]
                    probabilities[label] *= self.gaussian_probability(
                        input_data[i], mean, stdev)
            return probabilities
        # 类别
        def predict(self, X_test):
            # {0.0: 2.9680340789325763e-27, 1.0: 3.5749783019849535e-26}
            label = sorted(
                self.calculate_probabilities(X_test).items(),
                key=lambda x: x[-1])[-1][0]
            return label
        def score(self, X_test, y_test):
            right = 0
            for X, y in zip(X_test, y_test):
                label = self.predict(X)
                if label == y:
                    right += 1
            return right / float(len(X_test))
    
    model = NaiveBayes()
    
    model.fit(X_train, y_train)
    
    print(model.predict([4.4, 3.2, 1.3, 0.2]))
    
    model.score(X_test, y_test)
    
    from sklearn.naive_bayes import GaussianNB
    
    clf = GaussianNB()
    clf.fit(X_train, y_train)
    
    clf.score(X_test, y_test)
    
    clf.predict([[4.4, 3.2, 1.3, 0.2]])
    
    from sklearn.naive_bayes import BernoulliNB, MultinomialNB # 伯努利模型和多项式模型
    

    五、运行截图


    2.


    3.


    4.


    5.


    6.


    7.


    8.


    9.


    10.


    11.


    12.


    13.


    14.

    六、小结

    讨论朴素贝叶斯算法的优缺点。
    优点
    1.朴素贝叶斯模型发源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率;
    2.对大数量训练和查询时具有较高的速度。即使使用超大规模的训练集,针对每个项目通常也只会有相对较少的特征数,并且对项目的训练和分类也仅仅是特征概率的数学运算而已;
    3.对小规模的数据表现很好,能个处理多分类任务,适合增量式训练(即可以实时的对新增的样本进行训练);
    4.对缺失数据不太敏感,算法也比较简单,常用于文本分类;
    5.朴素贝叶斯对结果解释容易理解。
    缺点
    1.需要计算先验概率;
    2.分类决策存在错误率;
    3.对输入数据的表达形式很敏感;
    4.由于使用了样本属性独立性的假设,所以如果样本属性有关联时其效果不好。

  • 相关阅读:
    Linux使用locate命令定位文件
    【iOS开发-54】案例学习:通过UIScrollView的缩放图片功能练习代理模式的详细实现
    数据结构—单链表(类C语言描写叙述)
    怎样訪问pcie整个4k的配置空间
    [Swift]LeetCode988. 从叶结点开始的最小字符串 | Smallest String Starting From Leaf
    [Swift]LeetCode985. 查询后的偶数和 | Sum of Even Numbers After Queries
    [Swift]LeetCode494. 目标和 | Target Sum
    [Swift]LeetCode493. 翻转对 | Reverse Pairs
    [Swift]LeetCode491. 递增子序列 | Increasing Subsequences
    [Swift]LeetCode488. 祖玛游戏 | Zuma Game
  • 原文地址:https://www.cnblogs.com/pianyu666/p/14939202.html
Copyright © 2011-2022 走看看