程序示例:
from torchvision import transforms
from PIL import Image
import torch
def gaussian(img, mean, std):
c, h, w = img.shape
noise = torch.randn([c, h, w])*std + mean
return noise
img_jpg = Image.open('C:/Users/admin/Desktop/bird.jpg').convert('RGB')
to_tensor = transforms.ToTensor()
img_tensor = to_tensor(img_jpg)
noise_tensor = gaussian(img_tensor, 0, 0.05)
noise_img_tensor = img_tensor + noise_tensor
for i in range(img_tensor.shape[0]): # min-max normalization
noise_tensor[i] = (noise_tensor[i] - noise_tensor[i].min() ) / (noise_tensor[i].max() - noise_tensor[i].min())
noise_img_tensor[i] = (noise_img_tensor[i] - noise_img_tensor[i].min() ) / (noise_img_tensor[i].max() - noise_img_tensor[i].min())
to_PILimage = transforms.ToPILImage()
noise = to_PILimage(noise_tensor)
noise_img = to_PILimage(noise_img_tensor)
noise.save('C:/Users/admin/Desktop/noise0.05.jpg')
noise_img.save('C:/Users/admin/Desktop/noise_img0.05.jpg')
print('Done.')
图像:
