broadcast 是 numpy 中 array 的一个重要操作。
首先,broadcast 只适用于加减。
然后,broadcast 执行的时候,如果两个 array 的 shape 不一样,会先给“短”的那一个,增加高维度“扩展”(broadcasting),比如,一个 2 维的 array,可以是一个 3 维 size 为 1 的 3维 array。
类似于: shape(1,3,2) = shape(3,2)
最后,比较两个 array(扩展后的),按照 dimension 从低到高,比较每一个维度的 size 是否满足下面两个条件之一:
1. 相等
2. 其中一个为 1
所以,举例,下列 array 是否可以进行 broadcast:
1. shape(4, 3) 与 shape(3,) :shape(3) 可以 broadcast 为 shape(1, 3),那么,从低到高: d0(3 === 3), d1(其中一个为 1)。结论,可以,结果的为 shape(4, 3)
2. shape(6,5,4,3, 与 shape(5, 4, 3):shape(5, 4, 3) 可以 broadcast 为 shape(1,5,4,3),那么,从低到高:d0( 3 === 3), d1(4 === 4), d2(5===5),d3(其中一个为 1)。结论,可以,结果为 shape(6, 5, 4, 3)。
3. shape(2,3) 与 shape(5,4,3):shape(2,3) 可以 broadcast 为 shape(1, 2, 3),那么,从低到高:d0( 3 == 3), d1(4!=2)。结论,不能进行 broadcast。
4. shape(4,1) 与 shape(5):shape(5)可以 broadcast 为 shape(1,5),那么,从低到高: d0( 其中一个为 1), d1(其中一个为 1)。结论,可以进行 broadcast,结果为 shape(4, 5) 。
broadcast 之后的运算是怎样呢?举例说明:
a = [ [0,1,2,3], [4,5,6,7] ] b = [1,2,3,4] a + b = [ [1,3,5,7], [5,7,9,11] ]
或可自己运行下面代码观察
import numpy as np a = np.arange(12) b = a.reshape(3,2,2) c = np.arange(4) d = c.reshape(2, 2) e = np.arange(2) print d+b print e+b
还有下面一种特殊情况,即扩展低维度为 1 的情况下:
import numpy as np a = np.arange(3) b = np.arange(5) a = a[:, np.newaxis] print a print b print a+b
基本上是只在对应的 dimension 进行加减,扩展的部分不参与运算。