zoukankan      html  css  js  c++  java
  • Python:进程

    由于GIL的存在,python一个进程同时只能执行一个线程。因此在python开发时,计算密集型的程序常用多进程,IO密集型的使用多线程

    1.多进程创建:

    #创建方法1:将要执行的方法作为参数传给Process
    
    from multiprocessing import Process
    
    def f(name):
        print 'hello',name
    
    if __name__ == '__main__':      #需要注意的是,多进程只能在main中执行
      p = Process(target=f,args=('pingy',))  #target=f指执行函数f,args=('pingy',)是指以元组方式传入函数的参数
      p.start()   #执行进程
      p.join()    #父进程停止,等待子进程执行完
    #创建方法2:从Process继承,并重写run()
    from multiprocessing import Process
    
    class MyProcess(Process):
        def run(self):
            print("MyProcess extended from Process")
    
    if __name__ == '__main__':    #需要注意的是,多进程只能在main中执行
        p2=MyProcess()
        p2.start()

     实例方法:

    run():  #默认的run()函数调用target的函数,你也可以在子类中覆盖该函数
    start() : #启动该进程
    daemon(): #停止子进程,只执行父进程
    join([timeout]) : #父进程被停止,直到子进程被执行完毕。当timeout为None时没有超时,否则有超时
    is_alive(): #返回进程是否在运行。正在运行指启动后、终止前
    terminate(): #结束进程

     例:

    from multiprocessing import Process
    from threading import Thread
    import time
    import os
    
    def foo(n):
        time.sleep(2)
        print 'Number:',n
        print '子进程ID:',os.getpid(),'父进程ID:',os.getpid()
    
    def main1():
        for i in range(2):
            foo(i)
    
    def main2():
        for i in range(2):
            p = Process(target=foo,args=(i,))
            print p.name,'准备执行...'    #p.name为进程名
            p.start()
            print p.pid,'开始执行...'     #在进程start前,进程号p.pid为None
            p.join(1)    #join([timeout])        父进程被停止,直到子进程被执行完毕。
    
    
    if __name__ == '__main__':
        print '主进程ID:',os.getpid()
        print '++++++++++++++++++++++++++++++++++++++++++'
        main1()
        print '------------------------------------------'
        main2()

    输出结果:

    主进程ID: 84792
    ++++++++++++++++++++++++++++++++++++++++++
    Number: 0
    子进程ID: 84792 父进程ID: 84792
    Number: 1
    子进程ID: 84792 父进程ID: 84792
    ------------------------------------------
    Process-1 准备执行...
    123316 开始执行...
    Process-2 准备执行...
    85716 开始执行...
    Number: 0
    子进程ID: 123316 父进程ID: 123316
    Number: 1
    子进程ID: 85716 父进程ID: 85716

    设置daemon属性:

    #不加daemon:
    
    import multiprocessing
    import time
    
    def worker(interval):
        print("work start:{0}".format(time.ctime()));
        time.sleep(interval)
        print("work end:{0}".format(time.ctime()));
    
    if __name__ == "__main__":
        p = multiprocessing.Process(target = worker, args = (3,))
        p.start()
        print "end!"

    执行结果:

    end!
    work start:Thu Oct 20 16:46:12 2016
    work end:Thu Oct 20 16:46:15 2016
    #加上daemon后:
    
    import multiprocessing
    import time
    
    def worker(interval):
        print("work start:{0}".format(time.ctime()));
        time.sleep(interval)
        print("work end:{0}".format(time.ctime()));
    
    if __name__ == "__main__":
        p = multiprocessing.Process(target = worker, args = (3,))
        p.daemon = True
        p.start()
        print "end!"

    输出结果:

    end!

    设置daemon执行完结束的方法:

    import multiprocessing
    import time
    
    def worker(interval):
        print("work start:{0}".format(time.ctime()));
        time.sleep(interval)
        print("work end:{0}".format(time.ctime()));
    
    if __name__ == "__main__":
        p = multiprocessing.Process(target = worker, args = (3,))
        p.daemon = True
        p.start()
        p.join()   #
        print "end!"

    输出结果:

    work start:Thu Oct 20 16:49:34 2016
    work end:Thu Oct 20 16:49:37 2016
    end!

    将进程定义为类:

    import multiprocessing
    import time
    
    class ClockProcess(multiprocessing.Process):
        def __init__(self, interval):
            multiprocessing.Process.__init__(self)
            self.interval = interval
    
        def run(self):
            n = 5
            while n > 0:
                print("the time is {0}".format(time.ctime()))
                time.sleep(self.interval)
                n -= 1
    
    if __name__ == '__main__':
        p = ClockProcess(3)
        p.start()  

    输出结果:

    the time is Thu Oct 20 16:42:21 2016
    the time is Thu Oct 20 16:42:24 2016
    the time is Thu Oct 20 16:42:27 2016
    the time is Thu Oct 20 16:42:30 2016
    the time is Thu Oct 20 16:42:33 2016

    多进程与多线程的区别:

    from multiprocessing import Process
    import threading
    import time
    
    li = []
    def run(li1,n): li1.append(n) print li1 if __name__ == '__main__':for i in range(10): #创建多进程,每个进程占用单独内存 p = Process(target=run,args=[li,i]) p.start() time.sleep(1) print '我是分割线'.center(50,'*') for i in range(10): #创建多线程,所有线程共享内存 t = threading.Thread(target=run,args=[li,i]) t.start()

    执行结果:

    [0]
    [1]
    [2]
    [3]
    [4]
    [5]
    [6]
    [7]
    [8]
    [9]
    *****************我是分割线******************
    [0]
    [0, 1]
    [0, 1, 2]
    [0, 1, 2, 3]
     [0, 1, 2[, 03, , 14, , 25, ]3
    , 4, 5]
     [0, 1, 2[, 03, , 14, , 25, , 36, , 47, ][5
    0, , 61, , 72, , 83], 
    4, 5, 6, [70, , 81, , 92], 
    3, 4, 5, 6, 7, 8, 9]

    2.多进程之间资源共享方法

    (1)锁:作用是当多个进程需要访问共享资源的时候,Lock可以用来避免访问的冲突。它又分为Lock和rLock,rLock中除了状态locked和unlocked外还记录了当前lock的owner和递归层数,使得RLock可以被同一个线程多次acquire()。如果使用RLock,那么acquire和release必须成对出现,即调用了n次acquire,必须调用n次的release才能真正释放所占用的琐。

    #锁的使用方法:
    import multiprocessing 
    lock = multiprocessing.Lock() #Lock对象
    lock.acquire(([timeout]))  #锁定。timeout为可选项,如果设定了timeout,则在超时后通过返回值可以判断是否得到了锁
    lock.release()  #解锁
    
    rLock = multiprocessing.RLock()  #RLock对象
    rLock.acquire(([timeout])) #锁定。timeout为可选项,如果设定了timeout,则在超时后通过返回值可以判断是否得到了锁
     rLock.release() #解锁

     例:

    import multiprocessing
    import sys
    
    def worker_with(lock, f):
        with lock:
            fs = open(f, 'a+')
            n = 10
            while n > 1:
                fs.write("Lockd acquired via with
    ")
                n -= 1
            fs.close()
            
    def worker_no_with(lock, f):
        lock.acquire()
        try:
            fs = open(f, 'a+')
            n = 10
            while n > 1:
                fs.write("Lock acquired directly
    ")
                n -= 1
            fs.close()
        finally:
            lock.release()
        
    if __name__ == "__main__":
        lock = multiprocessing.Lock()
        f = "file.txt"
        w = multiprocessing.Process(target = worker_with, args=(lock, f))
        nw = multiprocessing.Process(target = worker_no_with, args=(lock, f))
        w.start()
        nw.start()
        print "end"

    输出结果:

    Lockd acquired via with
    Lockd acquired via with
    Lockd acquired via with
    Lockd acquired via with
    Lockd acquired via with
    Lockd acquired via with
    Lockd acquired via with
    Lockd acquired via with
    Lockd acquired via with
    Lock acquired directly
    Lock acquired directly
    Lock acquired directly
    Lock acquired directly
    Lock acquired directly
    Lock acquired directly
    Lock acquired directly
    Lock acquired directly
    Lock acquired directly

     (2)multiprocess.Queue:实现进/线程间的同步

    • FIFO(先进先出)队列
    • LIFO(后进先出)队列
    • PriorityQueue(优先级)队列

    注意:Queue.Queue是进程内非阻塞队列,multiprocess.Queue是跨进程通信队列。多进程前者是各自私有,后者是各子进程共有。

    实例方法:

    Queue.qsize() 返回队列的大小
    Queue.empty() 如果队列为空,返回True,反之False
    Queue.full() 如果队列满了,返回True,反之False
    Queue.full 与 maxsize 大小对应
    Queue.get([block[, timeout]])获取队列,timeout等待时间
    Queue.get_nowait() 相当Queue.get(False)
    Queue.put(item) 写入队列,timeout等待时间
    Queue.put_nowait(item) 相当Queue.put(item, False)
    Queue.task_done() 在完成一项工作之后,Queue.task_done()函数向任务已经完成的队列发送一个信号
    Queue.join() 实际上意味着等到队列为空,再执行别的操作

    FIFO(先进先出)队列:

    import Queue
    
    q = Queue.Queue()
    
    for i in range(5):
        q.put(i)
    
    while not q.empty():
        print q.get()
    
    输出结果: 0
    1 2 3 4

    LIFO后进先出队列:

    import Queue
    
    q = Queue.LifoQueue()
    
    for i in range(5):
        q.put(i)
    
    while not q.empty():
        print q.get()
    输出结果:
    4 3 2 1 0

    优先级队列:

    import Queue
    import threading
    import time
    
    exitFlag = 0
    
    class myThread (threading.Thread):
        def __init__(self, threadID, name, q):
            threading.Thread.__init__(self)
            self.threadID = threadID
            self.name = name
            self.q = q
        def run(self):
            print "Starting " + self.name
            process_data(self.name, self.q)
            print "Exiting " + self.name
    
    def process_data(threadName, q):
        while not exitFlag:
            queueLock.acquire()
            if not workQueue.empty():
                data = q.get()
                queueLock.release()
                print "%s processing %s" % (threadName, data)
            else:
                queueLock.release()
            time.sleep(1)
    
    threadList = ["Thread-1", "Thread-2", "Thread-3"]
    nameList = ["One", "Two", "Three", "Four", "Five"]
    queueLock = threading.Lock()
    workQueue = Queue.Queue(10)
    threads = []
    threadID = 1
    
    # 创建新线程
    for tName in threadList:
        thread = myThread(threadID, tName, workQueue)
        thread.start()
        threads.append(thread)
        threadID += 1
    
    # 填充队列
    queueLock.acquire()
    for word in nameList:
        workQueue.put(word)
    queueLock.release()
    
    # 等待队列清空
    while not workQueue.empty():
        pass
    
    # 通知线程是时候退出
    exitFlag = 1
    
    # 等待所有线程完成
    for t in threads:
        t.join()
    print "Exiting Main Thread"

    输出结果:

    Starting Thread-1
    Starting Thread-2
    Starting Thread-3
    Thread-1 processing One
    Thread-2 processing Two
    Thread-3 processing Three
    Thread-1 processing Four
    Thread-2 processing Five
    Exiting Thread-3
    Exiting Thread-1
    Exiting Thread-2
    Exiting Main Thread

     multiprocess.Queue:实现进程间的同步:

    例1:

    from multiprocessing import Process,Queue             
    def foo(q,n):
        q.put(n)
    
    if __name__ == '__main__':
        que=Queue()
        for i in range(5):
            p=Process(target=foo,args=(que,i))
            p.start()
            p.join()
    
        print(que.qsize())

    输出结果:

    5    

     例2:

    import multiprocessing
    
    def writer_proc(q):
        try:
            q.put(1, block = False)
        except:
            pass
    
    def reader_proc(q):
        try:
            print q.get(block = False)
        except:
            pass
    
    if __name__ == "__main__":
        q = multiprocessing.Queue()
        writer = multiprocessing.Process(target=writer_proc, args=(q,))
        writer.start()
    
        reader = multiprocessing.Process(target=reader_proc, args=(q,))
        reader.start()

    输出结果:

    1   

    (3)multiprocessing.Value与multiprocessing.Array:进行数据共享

    from multiprocessing import Process,Value,Array
    
    def foo1(n,a):
        n.value = 3
        for i in range(len(a)):
            a[i] = -a[i]
    
    if __name__ == '__main__':
        num = Value('d',0.0)    #d的意思是小数.创建0.0
        arr = Array('i',range(10))   #i的意思是整数.创建一个0-9的整数
        p = Process(target=foo1,args=(num,arr))
        p.start()
        p.join()
        print num.value
        print arr[:]

    输出结果:

    3.0
    [0, -1, -2, -3, -4, -5, -6, -7, -8, -9]

    (4)multiprocessing.Manager:数据共享

    from multiprocessing import Manager,Process
    
    def f(d,l):
        d[1] = '1'
        d['2'] = 2
        d[0.25] = None
        l.reverse()
    if __name__ == '__main__':
          manage = Manager()
          d = manage.dict()   #创建一个进程间可共享的dict
          l = manage.list(range(10))   #创建一个进程间可共享的list
          p = Process(target=f,args=(d,l))
          p.start()
          p.join()
          print d
          print l

    输出结果:

    {0.25: None, 1: '1', '2': 2}
    [9, 8, 7, 6, 5, 4, 3, 2, 1, 0]

    3.pool:如果需要多个子进程时可以考虑使用进程池(pool)来管理

    Pool可以提供指定数量的进程,供用户调用,当有新的请求提交到pool中时,如果池还没有满,那么就会创建一个新的进程用来执行该请求;但如果池中的进程数已经达到规定最大值,那么该请求就会等待,直到池中有进程结束,才会创建新的进程来它。

    (1)使用进程池(非阻塞)

    #使用进程池(非阻塞)
    import time
    import multiprocessing
    
    def fun(msg):
        print 'MSG:',msg
        time.sleep(3)
        print 'end'
    if __name__ == '__main__':
        pool =  multiprocessing.Pool(processes=3)
        for i in xrange(4):
            msg = 'hello,%d' %(i)
            pool.apply_async(fun,(msg,))   #维持执行的进程总数为processes,当一个进程执行完毕后会添加新的进程进去
        print '-----------------------'
        pool.close()
        pool.join()
        print 'Sub-processes done'

    输出结果:

    -----------------------
    MSG: hello,0
    MSG: hello,1
    MSG: hello,2
    end
    MSG: hello,3
    end
    end
    end
    Sub-processes done

    (2)使用进程池(阻塞)

    import time,multiprocessing
    
    def fun(msg):
        print 'MSG:',msg
        time.sleep(3)
        print 'end'
    if __name__ == '__main__':
        pool = multiprocessing.Pool(processes=3)
        for i in xrange(4):
            msg = 'hello,%d' %i
            pool.apply(fun,(msg,))
        print '-------------------------------'
        pool.close()
        pool.join()
        print 'Sub-processes done'

    输出结果:

    MSG: hello,0
    end
    MSG: hello,1
    end
    MSG: hello,2
    end
    MSG: hello,3
    end
    -------------------------------
    Sub-processes done

    4.Pipe:用于具有亲缘关系进程间的通信,有名的管道克服了管道没有名字的限制,因此,除具有管道所具有的功能外,它还允许无亲缘关系进程间的通信;

    实现机制:

    管道是由内核管理的一个缓冲区,相当于我们放入内存中的一个纸条。管道的一端连接一个进程的输出。这个进程会向管道中放入信息。管道的另一端连接一个进程的输入,这个进程取出被放入管道的信息。一个缓冲区不需要很大,它被设计成为环形的数据结构,以便管道可以被循环利用。当管道中没有信息的话,从管道中读取的进程会等待,直到另一端的进程放入信息。当管道被放满信息的时候,尝试放入信息的进程会等待,直到另一端的进程取出信息。当两个进程都终结的时候,管道也自动消失。

    import multiprocessing
    import time
    
    def proc1(pipe):
        while True:
            for i in range(10000):
                print 'send:%s' %i
                pipe.send(i)
                time.sleep(1)
    
    def proc2(pipe):
        while True:
            print 'proc2 recv:',pipe.recv()
            time.sleep(1)
    
    def proc3(pipe):
        while True:
            print 'proc3 recv:',pipe.recv()
            time.sleep(1)
    
    if __name__ == '__main__':
        pipe = multiprocessing.Pipe()
        p1 = multiprocessing.Process(target=proc1,args=(pipe[0],))
        p2 = multiprocessing.Process(target=proc2, args=(pipe[1],))
        #p3 = multiprocessing.Process(target=proc3, args=(pipe[1],))
        p1.start()
        p2.start()
        #p3.start()
        p1.join()
        p2.join()
        #p3.join()

    输出结果:

    send:0
    proc2 recv: 0
    send:1
    proc2 recv: 1
    send:2
    proc2 recv: 2
    send:3
    proc2 recv: 3
    send:4
    proc2 recv: 4
    send:5
    proc2 recv: 5
    send:6
    proc2 recv: 6
  • 相关阅读:
    当前疫情期间,家里可以适当储备的物资
    35岁改行做程序员,需要勇气和决心
    离婚潮来临,女性在崛起
    摄影作品首先要取悦自己,更要打动他人
    京剧是该阳春白雪还是下里巴人?
    汶川和武汉哪个更让人铭记?
    35以上的女强人不结婚,只用平常待之
    苏州记忆之上班路上偶遇2美女打架
    SAP SD微观研究之销售发票自动生成初探
    Python requests库的使用(二)
  • 原文地址:https://www.cnblogs.com/ping-y/p/5981064.html
Copyright © 2011-2022 走看看