zoukankan      html  css  js  c++  java
  • HDU_2056——相交矩形的面积

    Problem Description
    Given two rectangles and the coordinates of two points on the diagonals of each rectangle,you have to calculate the area of the intersected part of two rectangles. its sides are parallel to OX and OY .
     
    Input
    Input The first line of input is 8 positive numbers which indicate the coordinates of four points that must be on each diagonal.The 8 numbers are x1,y1,x2,y2,x3,y3,x4,y4.That means the two points on the first rectangle are(x1,y1),(x2,y2);the other two points on the second rectangle are (x3,y3),(x4,y4).
     
    Output
    Output For each case output the area of their intersected part in a single line.accurate up to 2 decimal places.
     
    Sample Input
    1.00 1.00 3.00 3.00 2.00 2.00 4.00 4.00 5.00 5.00 13.00 13.00 4.00 4.00 12.50 12.50
     
    Sample Output
    1.00 56.25
     1 #include <cstdio>
     2 double max(double a,double b)
     3 {
     4     return (a>b)?a:b;    
     5 }
     6 double min(double a,double b)
     7 {
     8     return (a<b)?a:b;    
     9 }
    10 void fun(double &a,double &b)
    11 {
    12     double t;
    13     t=a;a=b;b=t;    
    14 }
    15 int main()
    16 {
    17    double x1,y1,x2,y2,x3,y3,x4,y4;
    18    while(~scanf("%lf%lf%lf%lf%lf%lf%lf%lf",&x1,&y1,&x2,&y2,&x3,&y3,&x4,&y4))
    19       {
    20             //规范对角线坐标,对角线是从左下到右上, 
    21             if(x1>x2)    fun(x1,x2);
    22             if(y1>y2)    fun(y1,y2);
    23             if(x3>x4)    fun(x3,x4);
    24             if(y3>y4)    fun(y3,y4);
    25             
    26             //如果条件不能构成相交矩阵 
    27             if(x1>=x4 || x2<=x3 || y1>=y4 || y2<=y3)
    28                 {
    29                     printf("%.2lf
    ",0);
    30                 }
    31             else
    32                 {
    33                     //构造相交矩阵的对角线坐标(x1,y1),(x2,y2)
    34                     //相交矩形的对角线坐标能够确定 
    35                     x1=max(x1,x3);
    36                     y1=max(y1,y3);
    37                     x2=min(x2,x4);
    38                     y2=min(y2,y4);
    39                     printf("%.2lf
    ",(x2-x1)*(y2-y1));
    40                 }
    41         }
    42    return 0;
    43 }
    ——现在的努力是为了小时候吹过的牛B!!
  • 相关阅读:
    c# 线程同步各类锁
    C#_从DataTable中检索信息
    永无BUG
    标志枚举
    将多行按分隔符"|"合成一行
    回车换行浅析
    url传输编码
    xshell 禁用铃声 提示音
    php 编译安装 mysql.so
    301 302 304
  • 原文地址:https://www.cnblogs.com/pingge/p/3185136.html
Copyright © 2011-2022 走看看