Problem Description
Given a sequence 1,2,3,......N, your job is to calculate all the possible sub-sequences that the sum of the sub-sequence is M.
Input
Input contains multiple test cases. each case contains two integers N, M( 1 <= N, M <= 1000000000).input ends with N = M = 0.
Output
For each test case, print all the possible sub-sequence that its sum is M.The format is show in the sample below.print a blank line after each test case.
Sample Input
20 10 50 30 0 0
Sample Output
[1,4] [10,10] [4,8] [6,9] [9,11] [30,30]
1 /* 2 设j为子串的长度,i为子串的第一个数 3 m=[j*(i+i+(j-1)*1)]/2 4 2*m/j-j=i+i-1----2*i=2*m/j-j+1 5 因为i+i-1>0 6 所以2*m>j*j----j<sqrt(2m) 7 */ 8 #include <cstdio> 9 #include <cmath> 10 int main() 11 { 12 int n,m,i,j; 13 while(~scanf("%d%d",&n,&m),(n||m)) 14 { 15 for(j=(int)sqrt(2*(double)m);j>=1;j--)//枚举长度 16 { 17 i=(2*m/j-j+1)/2;//由长度获得的子串第一个元素值 18 if((j*(i+i+j-1))/2 == m)//等差数列前n项的和,还有通项公式 19 printf("[%d,%d] ",i,i+j-1); 20 } 21 printf(" "); 22 } 23 return 0; 24 }