zoukankan      html  css  js  c++  java
  • 【简单算法】什么是复杂度?

    在上一篇文章里,有看到一个简单算法题的2个解法,我们运用了复杂度分析来判断哪个解法更合适。
    这里的复杂度,就是用于衡量程序的运行效率的重要度量因素。

    虽然有句俗话“不管是白猫还是黑猫,抓到老鼠就是好猫”,这句话是站在结果导向的,没错。但是如果
    有个程序要去处理海量数据,一个程序员写的要执行2天,而另一个程序员只要半小时,那么第二种显然更适合
    我们的实际需求。

    一、什么是复杂度

    复杂度是一个关于输入数据量n的函数。

    要表示复杂度很简单,用大写O加上括号O()将复杂度包起来就好了。比如这个代码的复杂度是f(n),那就可以写成
    O(f(n))

    在计算复杂度的时候,有三点需要我们记住:

    • 复杂度与具体常系数无关
    • 多项式级复杂度相加,选择高者为结果
    • O(1)表示特殊复杂度

    1、复杂度与具体常系数无关

    举个例子,将一个列表反转,不用reverse()。

    def demo_1():
        a = [1, 2, 3, 4, 5]
        b = [0 for x in range(0,5)]  #第一个for循环
        n = len(a)
        for i in range(n):   # 第二个for循环
            b[n - i - 1] = a[i]
        print(b)
    
    if __name__ == "__main__":
        demo_1()
    
    ===============运行结果==================
    D:ProgramsPythonPython36python.exe D:/练习/leecode/fuzadu.py
    [5, 4, 3, 2, 1]
    
    Process finished with exit code 0
    

    可以看到我先用了一个for循环创建了一个跟a列表等长度,元素全是0的列表。
    然后再用一个for循环将a里的元素倒序放入b,最终得到一个跟a反序的列表。

    其中,每一个for循环的时间复杂度都是O(n),2个加起来就是O(n)+O(n),也等于O(n+n),也等于O(2n)
    也就是相当于 一段 O(n)复杂度的代码先后执行两遍,它们的复杂度是一致的。

    2、多项式级复杂度相加,选择高者为结果

    有了上面的例子,这个也就好理解了。
    假设,一个算法的复杂度是O(n²)+O(n),那么可以知道,当n越来越大,也就是输入的数据量越来越大时,n^2的变化率要比n大的多,
    所以,这时候我们只取变化率更大的n^2来表示复杂度即可,也就是O(n²)+O(n)等同于O(n²)

    3、O(1)表示特殊复杂度

    还是借助上面的反转问题,这里再使用第二种解法。

    def demo_2():
        a = [1, 2, 3, 4, 5]
        tmp = 0
        n= len(a)
    
        for i in range(n//2):    #  // 表示整数除法,返回不大于结果的一个最大整数
            tmp = a[i]
            a[i] = a[n -i -1]
            a[n -i -1] = tmp
        print(a)
    
    if __name__ == "__main__":
        demo_2()
    
    ==============运行结果==============
    D:ProgramsPythonPython36python.exe D:/练习/leecode/fuzadu.py
    [5, 4, 3, 2, 1]
    
    Process finished with exit code 0
    

    跟第一个解法相比,第二个解法少了一个for循环,而且循环次数只是到了列表的一半,那么时间复杂度就是O(n/2)
    由于复杂度与具体的常系数无关的性质,这段代码的时间复杂度还是 O(n)

    但是在空间复杂度上,第二个解法开辟了一个新的变量tmp,它与数组长度无关。
    输入是 5 个元素的数组,需要一个tmp变量输入是 50 个元素的数组,同样只需要一个tmp变量。

    因此,空间复杂度与输入数组长度无关,这就是 O(1)

    二、分析复杂度

    这里就直接上一些经验性的结论,可以直接拿过来用的:

    • 一个顺序结构的代码,时间复杂度是 O(1)
    • 一个简单的 for 循环,时间复杂度是 O(n)
    • 两个顺序执行的 for 循环,时间复杂度是 O(n)+O(n)=O(2n),其实也是 O(n)
    • 两个嵌套的 for 循环,时间复杂度是 O(n²)
    • 二分查找,时间复杂度都是 O(logn)

    趁热打铁,分析一下下面代码的复杂度:

    for (i = 0; i < n; i++) {
        for (j = 0; j < n; j++) {
            for (k = 0; k < n; k++) {
            }
            for (m = 0; m < n; m++) {
            }
        }
    }
    

    可以先从最里面看,最内层是2个顺序结构的for循环,复杂度是O(n)
    中间这层的又嵌套了一个for循环,所以这时候复杂度就变成了O(n^2)
    最后,最外层又嵌套了一个for循环,所以最终的复杂度就是O(n^3)

    虽然测试工程师的代码对于复杂度要求不高甚至说非常低,但是我觉得理解复杂度,并且会做一些简单的分析
    还是很有必要的。

  • 相关阅读:
    Balanced Substring
    解决vscode可以编译通过c++项目,但头文件有红色波浪线的问题
    Poj2299---Ultra-QuickSort
    树状数组
    内置函数
    函数式编程,尾调用,map函数,filter函数,reduce函数
    函数作用域和匿名函数
    函数参数/局部变量与全局变量/前向引用(函数即变量)
    函数的定义
    字符串格式化
  • 原文地址:https://www.cnblogs.com/pingguo-softwaretesting/p/14166857.html
Copyright © 2011-2022 走看看