zoukankan      html  css  js  c++  java
  • 多元线性回归的预测

       回归模型除了对参数进行估计和检验,以弄清楚变量的相关性和因果性之外,另一个目的便是进行预测。

      那么,由OLS方法的出来的预测结果是否可靠呢?预测结果的可靠性又会受什么因素的影响呢?除了点估计的预测结果,能否有区间估计的预测结果呢?

      本文就这些问题,来进行一一探讨

     1.引入why

      回归模型除了对参数进行估计和检验,以弄清楚变量的相关性和因果性之外,另一个目的便是进行预测。

      那么,由OLS方法的出来的预测结果是否可靠呢?预测结果的可靠性又会受什么因素的影响呢?除了点估计的预测结果,能否有区间估计的预测结果呢?

      本文就这些问题,来进行一一探讨

    2.问题具体是什么?what

       

    首先,说明初始的多元线性估计模型:

    (1)

      在多元线性估计的过程中,我们已经得出了线性模型的估计形式

    2),

    其中是我们多元线性回归模型的参数估计值

    那么,现在我们有了模型形式以及参数的估计值。在被给定另一组自变量样本的条件下。

    我们对此时Y的估计为:3

    需要注意的是,上式只是对Y预测值的估计,并非对Y的估计。因为由公式(1)看出,Y是由两部分组成的,只是的估计,模型的随机项是无法估计的。所以我们说3)式只是对Y的预测值的估计。

    那么现在问题来了,我们现在求得的只是一个预测值的估计,那么Y的预测值E(Y0 )的区间估计能否得出,进一步Y的估计区间又能不能得出呢?

    什么?为什么要进行区间估计?很简单,因为只有点估计的话,你根本不知道点估计靠不靠谱,如果告诉你你下次考试预计分数是95,以及90-100这个分数区间包含你下次考试的分数的概率为90%,你觉得那种说法更靠谱呢?

       

    3.解决思路

    构造统计量,该统计量要分别包括E(Y0 )

    对于E(Y0 )的区间估计:

    易知:

    ,

    则可以通过y(hat)服从正态分布,但是方差未知,明显,可以用样本方差来进行t统计量的构建

    对于Y0 的区间估计

    发现

    服从正态分布,我们是知道的,而的分布也是有假设的,那么e0 的分布状况也就能够轻松获得了

    4.解决过程

    对于的区间估计

    对于的区间估计

    注:t分布是由正态分布推导出来的。

    其中,e为样本标准差。

    总结

    可以看出

    1. x0越与估计样本x差异大,区间也就越大,估计也就越不精准,这就是为什么回归模型不适合外推
    2. x的共线性越大, 也就越小,从而 的估计区间也就越大,估计越不精准。
  • 相关阅读:
    如何用grunt压缩文件
    nodejs 下载,安装,测试(windows环境下)
    INNODB和MYISAM
    HashMap和HashTable
    平衡二叉树(AVL)
    二叉排序树删除
    二叉排序树的创建和遍历
    二叉排序树基础
    赫夫曼树
    堆排序
  • 原文地址:https://www.cnblogs.com/pingzeng/p/5036806.html
Copyright © 2011-2022 走看看